2024-03-09 21:21:17 +01:00
|
|
|
// Voir README.md pour license précise, par Fcalva 2023-2024 et est sous GPLv3
|
|
|
|
|
2023-07-20 12:31:08 +02:00
|
|
|
#include <math.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <time.h>
|
|
|
|
|
|
|
|
#include <gint/display.h>
|
|
|
|
#include <gint/keyboard.h>
|
2023-12-03 12:13:09 +01:00
|
|
|
#include <libprof.h>
|
2023-07-20 12:31:08 +02:00
|
|
|
|
|
|
|
#include "fixed.h"
|
|
|
|
|
2024-08-09 18:40:08 +02:00
|
|
|
#include "gint/display-cg.h"
|
2023-07-20 12:31:08 +02:00
|
|
|
#include "moteur.h"
|
2024-03-09 21:21:17 +01:00
|
|
|
#include "map.h"
|
2023-07-20 12:31:08 +02:00
|
|
|
|
|
|
|
// moteur.c :
|
|
|
|
// ici se trouvent tout ce qui concerne les graphismes, mouvement et collisions
|
|
|
|
//
|
|
|
|
//
|
|
|
|
|
|
|
|
void move() {
|
|
|
|
extern int frame_time;
|
|
|
|
fixed_t moveSpeed = fmul(fix(frame_time), 0x148); //frame_time * fix(carrés/seconde/1000) là carrés/seconde = 5
|
|
|
|
fixed_t rotSpeed = fmul(fix(frame_time), 0x83); //frame_time * fix(radians/seconde/1000) là radians/seconde = 2
|
|
|
|
fixed_t c_rotSpeed = fix(cos(f2float(rotSpeed)));
|
|
|
|
fixed_t s_rotSpeed = fix(sin(f2float(rotSpeed)));
|
|
|
|
|
|
|
|
extern char map_test[map_w][map_h];
|
|
|
|
extern fixed_t planeX;
|
|
|
|
extern fixed_t planeY;
|
|
|
|
extern fixed_t dirX;
|
|
|
|
extern fixed_t dirY;
|
|
|
|
extern fixed_t posX;
|
|
|
|
extern fixed_t posY;
|
|
|
|
|
|
|
|
fixed_t oldDirX;
|
|
|
|
fixed_t oldPlaneX;
|
|
|
|
int xtemp1;
|
|
|
|
int ytemp1;
|
|
|
|
int xtemp2;
|
|
|
|
int ytemp2;
|
|
|
|
|
2024-03-09 21:21:17 +01:00
|
|
|
if (keydown(KEY_UP)) {
|
|
|
|
xtemp1 = f2int(posX + fmul(dirX, moveSpeed));
|
2023-07-20 12:31:08 +02:00
|
|
|
ytemp1 = f2int(posY);
|
2024-03-09 21:21:17 +01:00
|
|
|
xtemp2 = f2int(posX);
|
|
|
|
ytemp2 = f2int(posY + fmul(dirY, moveSpeed));
|
2023-07-20 12:31:08 +02:00
|
|
|
|
|
|
|
if(map_test[xtemp1][ytemp1] == 0) posX += fmul(dirX, moveSpeed);
|
|
|
|
if(map_test[xtemp2][ytemp2] == 0) posY += fmul(dirY, moveSpeed);
|
|
|
|
}
|
|
|
|
//move backwards if no wall behind you
|
|
|
|
if (keydown(KEY_DOWN)) {
|
|
|
|
xtemp1 = f2int(posX - fmul(dirX, moveSpeed));
|
2024-03-09 21:21:17 +01:00
|
|
|
ytemp1 = f2int(posY);
|
|
|
|
xtemp2 = f2int(posX);
|
|
|
|
ytemp2 = f2int(posY - fmul(dirY, moveSpeed));
|
2023-07-20 12:31:08 +02:00
|
|
|
|
|
|
|
if(map_test[xtemp1][ytemp1] == 0) posX -= fmul(dirX, moveSpeed);
|
|
|
|
if(map_test[xtemp2][ytemp2] == 0) posY -= fmul(dirY, moveSpeed);
|
|
|
|
}
|
|
|
|
//rotate to the rightdouble sin_rotspeed;
|
|
|
|
if (keydown(KEY_RIGHT)) {
|
|
|
|
//both camera direction and camera plane must be rotated
|
2024-03-09 21:21:17 +01:00
|
|
|
oldDirX = dirX;
|
2023-07-20 12:31:08 +02:00
|
|
|
dirX = (fmul(dirX, c_rotSpeed)+1) - (fmul(dirY, -s_rotSpeed)+1);
|
2024-03-09 21:21:17 +01:00
|
|
|
dirY = (fmul(oldDirX, -s_rotSpeed)+1) + (fmul(dirY, c_rotSpeed)+1);
|
|
|
|
oldPlaneX = planeX;
|
|
|
|
planeX = (fmul(planeX, c_rotSpeed)+1) - (fmul(planeY, -s_rotSpeed)+1);
|
2023-07-20 12:31:08 +02:00
|
|
|
planeY = (fmul(oldPlaneX, -s_rotSpeed)+1) + (fmul(planeY, c_rotSpeed)+1);
|
|
|
|
}
|
|
|
|
//rotate to the left
|
|
|
|
if (keydown(KEY_LEFT)) {
|
|
|
|
//both camera direction and camera plane must be rotated
|
|
|
|
oldDirX = dirX;
|
|
|
|
dirX = (fmul(dirX, c_rotSpeed)-1) - (fmul(dirY, s_rotSpeed)-1);
|
|
|
|
dirY = (fmul(oldDirX, s_rotSpeed)+1) + (fmul(dirY, c_rotSpeed)+1);
|
|
|
|
oldPlaneX = planeX;
|
|
|
|
planeX = (fmul(planeX, c_rotSpeed)-1) - (fmul(planeY, s_rotSpeed) - 1);
|
|
|
|
planeY = (fmul(oldPlaneX, s_rotSpeed)+1) + (fmul(planeY, c_rotSpeed) + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dirX > 0xFFFF) dirX = 0xFFFF;
|
2024-03-09 21:21:17 +01:00
|
|
|
if (dirY > 0xFFFF) dirY = 0xFFFF;
|
|
|
|
if (dirX < -0xFFFF) dirX = -0xFFFF;
|
|
|
|
if (dirY < -0xFFFF) dirY = -0xFFFF;
|
2023-07-20 12:31:08 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void spawn_gen(){
|
|
|
|
extern fixed_t posX;
|
|
|
|
extern fixed_t posY;
|
|
|
|
extern fixed_t dirX;
|
|
|
|
extern fixed_t dirY;
|
|
|
|
extern fixed_t planeX;
|
|
|
|
extern fixed_t planeY;
|
|
|
|
extern char map_test[map_w][map_h];
|
|
|
|
|
|
|
|
int seed, seed_x, seed_y;
|
|
|
|
int SeedSeed;
|
|
|
|
|
|
|
|
time_t timeN;
|
2024-03-09 21:21:17 +01:00
|
|
|
time(&timeN);
|
|
|
|
SeedSeed = timeN;
|
|
|
|
|
|
|
|
srand(SeedSeed);
|
|
|
|
|
|
|
|
while(1){
|
|
|
|
seed = rand() * 0.5 + rand() * 0.5;
|
|
|
|
seed_x = seed & 0b1111111;
|
|
|
|
seed_y = (seed >> 8) & 0b111111;
|
|
|
|
if (seed_x < map_w && seed_y < map_h && (seed_x < 111 && seed_y > 15)){
|
|
|
|
if(map_test[seed_x][seed_y] == 0){
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fixed_t start_dirX, start_dirY;
|
|
|
|
|
|
|
|
int dirSeed = (seed >> 9) & 0b11 ;
|
|
|
|
switch(dirSeed){
|
|
|
|
case 0: {
|
|
|
|
start_dirX = 0x0;
|
|
|
|
start_dirY = 0xFFFF;
|
|
|
|
planeX = fix(0.66);
|
|
|
|
planeY = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 1: {
|
|
|
|
start_dirX = 0xFFFF;
|
|
|
|
start_dirY = 0x0;
|
|
|
|
planeX = 0;
|
|
|
|
planeY = fix(-0.66);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 2: {
|
|
|
|
start_dirX = -0xFFFF;
|
|
|
|
start_dirY = 0x0;
|
|
|
|
planeX = 0;
|
|
|
|
planeY = fix(0.66);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 3: {
|
|
|
|
start_dirX = 0x0;
|
|
|
|
start_dirY = -0xFFFF;
|
|
|
|
planeX = fix(-0.66);
|
|
|
|
planeY = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default : {
|
|
|
|
start_dirX = 0xFFFF;
|
|
|
|
start_dirY = 0x0;
|
|
|
|
planeX = 0;
|
|
|
|
planeY = fix(-0.66);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
posX = fix(seed_x) + 0x7FFF;
|
|
|
|
posY = fix(seed_y) + 0x7FFF; //x and y start position
|
2023-07-20 12:31:08 +02:00
|
|
|
dirX = start_dirX;
|
2024-03-09 21:21:17 +01:00
|
|
|
dirY = start_dirY; //initial direction vector
|
2023-07-20 12:31:08 +02:00
|
|
|
}
|
|
|
|
|
2023-07-20 13:48:40 +02:00
|
|
|
void load_map(){
|
|
|
|
spawn_gen();
|
2023-07-20 12:31:08 +02:00
|
|
|
}
|
|
|
|
|
2024-08-09 18:40:08 +02:00
|
|
|
void draw_walls(){
|
2023-07-20 12:31:08 +02:00
|
|
|
extern fixed_t posX;
|
|
|
|
extern fixed_t posY;
|
|
|
|
extern fixed_t dirX;
|
|
|
|
extern fixed_t dirY;
|
|
|
|
extern fixed_t planeX;
|
|
|
|
extern fixed_t planeY;
|
2024-03-09 21:21:17 +01:00
|
|
|
extern image_t *tex_index[TINDEX_S];
|
2023-07-20 12:31:08 +02:00
|
|
|
extern char map_test[map_w][map_h];
|
|
|
|
|
|
|
|
fixed_t cameraX;
|
|
|
|
fixed_t rayDirX;
|
|
|
|
fixed_t rayDirY;
|
|
|
|
fixed_t sideDistX;//length of ray from current position to next x or y-side
|
|
|
|
fixed_t sideDistY;
|
|
|
|
fixed_t deltaDistX;
|
|
|
|
fixed_t deltaDistY;
|
|
|
|
fixed_t perpWallDist;
|
|
|
|
fixed_t texSize;
|
|
|
|
int x;
|
2024-08-02 18:01:59 +02:00
|
|
|
int i;
|
2023-07-20 12:31:08 +02:00
|
|
|
int mapX;
|
|
|
|
int mapY;
|
|
|
|
int stepX; //what direction to step in x or y-direction (either +1 or -1)
|
|
|
|
int stepY;
|
|
|
|
int side; //was a NS or a EW wall hit?
|
|
|
|
int lineHeight;
|
|
|
|
int texX;
|
|
|
|
int texSample;
|
|
|
|
int texSampleY;
|
|
|
|
|
|
|
|
int v_offset = 0; //(int)(sin(f2int(posX + posY)) * 5); //a raffiner un peu
|
|
|
|
fixed_t h_offset = 0; //fix(sin(f2int(posX - posY)) * 0.01);
|
|
|
|
|
|
|
|
struct image_linear_map temp;
|
|
|
|
|
|
|
|
for(x = 0; x < viewport_w; x++) {
|
2023-12-03 12:13:09 +01:00
|
|
|
|
2023-07-20 12:31:08 +02:00
|
|
|
//calculate ray position and direction
|
|
|
|
cameraX = fdiv(fix(x*2), fix(viewport_w)) - 0xFFFF + h_offset; //x-coordinate in camera space
|
|
|
|
|
|
|
|
rayDirX = dirX + fmul(planeX, cameraX);
|
|
|
|
rayDirY = dirY + fmul(planeY, cameraX);
|
|
|
|
|
|
|
|
|
|
|
|
//which box of the map we're in
|
|
|
|
mapX = f2int(posX);
|
|
|
|
mapY = f2int(posY);
|
|
|
|
|
|
|
|
// length of ray from one x or y-side to next x or y-side
|
|
|
|
// these are derived as:
|
|
|
|
// deltaDistX = sqrt(1 + (rayDirY * rayDirY) / (rayDirX * rayDirX))
|
|
|
|
// deltaDistY = sqrt(1 + (rayDirX * rayDirX) / (rayDirY * rayDirY))
|
|
|
|
// which can be simplified to abs(|rayDir| / rayDirX) and abs(|rayDir| / rayDirY)
|
|
|
|
// where |rayDir| is the length of the vector (rayDirX, rayDirY). Its length,
|
|
|
|
// unlike (dirX, dirY) is not 1, however this does not matter, only the
|
|
|
|
// ratio between deltaDistX and deltaDistY matters, due to the way the DDA
|
|
|
|
// stepping further below works. So the values can be computed as below.
|
|
|
|
// Division through zero is prevented, even though technically that's not
|
|
|
|
// needed in C++ with IEEE 754 floating point values.
|
2024-08-02 18:01:59 +02:00
|
|
|
|
|
|
|
rayDirX = rayDirX == 0 ? 1 : rayDirX;
|
|
|
|
rayDirY = rayDirY == 0 ? 1 : rayDirY;
|
2023-07-20 12:31:08 +02:00
|
|
|
|
|
|
|
deltaDistX = abs(fdiv(0xFFFF, rayDirX));
|
|
|
|
deltaDistY = abs(fdiv(0xFFFF, rayDirY));
|
2024-08-02 18:01:59 +02:00
|
|
|
|
2023-07-20 12:31:08 +02:00
|
|
|
//calculate step and initial sideDist
|
2023-10-19 17:15:52 +02:00
|
|
|
if (rayDirX < 0) {
|
|
|
|
stepX = -1;
|
2023-07-20 12:31:08 +02:00
|
|
|
sideDistX = fmul(posX - fix(mapX), deltaDistX);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
stepX = 1;
|
|
|
|
sideDistX = fmul( fix(mapX + 1) - posX, deltaDistX);
|
|
|
|
}
|
|
|
|
|
2023-08-20 15:45:57 +02:00
|
|
|
if (rayDirY == 0) {
|
|
|
|
stepY = 0;
|
2024-03-09 21:21:17 +01:00
|
|
|
sideDistY = 0;
|
2023-08-20 15:45:57 +02:00
|
|
|
}
|
|
|
|
else if (rayDirY < 0) {
|
2023-10-19 17:15:52 +02:00
|
|
|
stepY = -1;
|
2023-07-20 12:31:08 +02:00
|
|
|
sideDistY = fmul(posY - fix(mapY), deltaDistY);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
stepY = 1;
|
|
|
|
sideDistY = fmul( fix(mapY + 1) - posY, deltaDistY);
|
|
|
|
}
|
|
|
|
//perform DDA
|
|
|
|
while(true) {
|
|
|
|
//Check if the ray is out of range/bounds
|
|
|
|
if (sideDistX >= max_dist || sideDistY >= max_dist || mapX < 0 || mapY < 0 || mapX >= map_w || mapY >= map_h) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
//Otherwise check if ray has hit a wall
|
2023-12-03 12:13:09 +01:00
|
|
|
else if (map_test[mapX][mapY] > 0) {
|
2023-07-20 12:31:08 +02:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
//jump to next map square, either in x-direction, or in y-direction
|
|
|
|
if (sideDistX < sideDistY) {
|
|
|
|
sideDistX += deltaDistX;
|
|
|
|
mapX += stepX;
|
|
|
|
side = 0;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
sideDistY += deltaDistY;
|
|
|
|
mapY += stepY;
|
|
|
|
side = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//Calculate distance projected on camera direction. This is the shortest distance from the point where the wall is
|
|
|
|
//hit to the camera plane. Euclidean to center camera point would give fisheye effect!
|
|
|
|
//This can be computed as (mapX - posX + (1 - stepX) / 2) / rayDirX for side == 0, or same formula with Y
|
|
|
|
//for size == 1, but can be simplified to the code below thanks to how sideDist and deltaDist are computed:
|
|
|
|
//because they were left scaled to |rayDir|. sideDist is the entire length of the ray above after the multiple
|
|
|
|
//steps, but we subtract deltaDist once because one step more into the wall was taken above.
|
|
|
|
|
|
|
|
if (side == 0) perpWallDist = (sideDistX - deltaDistX);
|
|
|
|
else perpWallDist = (sideDistY - deltaDistY);
|
|
|
|
|
|
|
|
//texturing calculations
|
|
|
|
|
|
|
|
//calculate value of wallX
|
|
|
|
fixed_t wallX; //where exactly the wall was hit
|
|
|
|
if (side == 0) wallX = posY + fmul(perpWallDist, rayDirY);
|
|
|
|
else wallX = posX + fmul(perpWallDist, rayDirX);
|
|
|
|
wallX -= fix(floor(f2int(wallX)));
|
|
|
|
|
|
|
|
//x coordinate on the texture
|
|
|
|
texX = fmul(wallX, 64);
|
2024-03-09 21:21:17 +01:00
|
|
|
texX = texX % 64;
|
|
|
|
|
2023-07-20 12:31:08 +02:00
|
|
|
if(side == 0 && rayDirX > 0) texX = 64 - texX - 1;
|
|
|
|
if(side == 1 && rayDirY < 0) texX = 64 - texX - 1;
|
|
|
|
|
|
|
|
lineHeight = f2int(fdiv(fix(viewport_h), perpWallDist)); //Taille en px de la ligne
|
|
|
|
if (lineHeight < 1) lineHeight = 1;
|
2024-08-02 18:01:59 +02:00
|
|
|
if (lineHeight > viewport_h) lineHeight = viewport_h - 1;
|
2023-07-20 12:31:08 +02:00
|
|
|
|
|
|
|
fixed_t texSize = fix(lineHeight) / 64; //taille proportionelle de la ligne a la tex
|
2024-08-09 18:40:08 +02:00
|
|
|
if (texSize < 0x400) texSize = 0x400; //0x400 = 1/64 * 2^16
|
2023-07-20 12:31:08 +02:00
|
|
|
if (texSize > 0x3D000) { //0x3D000 = 3.8125 * 2^16, 3.8125 = viewport_h/64
|
2023-10-19 16:35:27 +02:00
|
|
|
texSample = fceil(fdiv(fix(viewport_h), texSize));
|
2023-12-03 12:13:09 +01:00
|
|
|
texSampleY = 32 - (int)texSample * 0.5;
|
2023-07-20 12:31:08 +02:00
|
|
|
}
|
|
|
|
else {
|
|
|
|
texSample = 64;
|
|
|
|
texSampleY = 0;
|
|
|
|
}
|
2024-08-02 18:01:59 +02:00
|
|
|
|
2024-08-09 18:40:08 +02:00
|
|
|
/*image_t texStripe;
|
2024-03-09 21:21:17 +01:00
|
|
|
|
|
|
|
texStripe = *image_sub(tex_index[map_test[mapX][mapY]], texX, texSampleY, 1, texSample);
|
2023-07-20 12:31:08 +02:00
|
|
|
|
|
|
|
image_scale(&texStripe, 0xFFFF, texSize, &temp);
|
2024-08-02 18:01:59 +02:00
|
|
|
image_linear(&texStripe, image_at(frame_buffer, x, viewport_h/2 - lineHeight/2, &temp);*/
|
|
|
|
|
|
|
|
image_t *tex = tex_index[map_test[mapX][mapY]];
|
|
|
|
|
|
|
|
int linePos = viewport_h/2 - lineHeight/2;
|
|
|
|
|
|
|
|
|
2024-08-09 18:40:08 +02:00
|
|
|
int maxpos = (linePos + lineHeight) > viewport_h ? viewport_h:(linePos + lineHeight);
|
|
|
|
fixed_t screenPos = fix(linePos);
|
|
|
|
uint32_t texDat = (uint32_t)tex->data + 2*texX;
|
|
|
|
for(int texPos = texSampleY; texPos < texSample; texPos++){
|
|
|
|
for(fixed_t oldPos = screenPos; oldPos < screenPos+texSize; oldPos+=0xFFFF){
|
|
|
|
gint_vram[ffloor(oldPos)*396+x] =*(uint16_t*)texDat;
|
2024-08-02 18:01:59 +02:00
|
|
|
}
|
2024-08-09 18:40:08 +02:00
|
|
|
screenPos += texSize;
|
|
|
|
texDat += tex->stride;
|
2024-08-02 18:01:59 +02:00
|
|
|
}
|
2023-07-20 12:31:08 +02:00
|
|
|
}
|
|
|
|
}
|