2014-12-04 18:41:16 +01:00
|
|
|
/* $OpenBSD: e_expl.c,v 1.3 2013/11/12 20:35:19 martynas Exp $ */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* expl.c
|
|
|
|
*
|
|
|
|
* Exponential function, long double precision
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* SYNOPSIS:
|
|
|
|
*
|
|
|
|
* long double x, y, expl();
|
|
|
|
*
|
|
|
|
* y = expl( x );
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* DESCRIPTION:
|
|
|
|
*
|
|
|
|
* Returns e (2.71828...) raised to the x power.
|
|
|
|
*
|
|
|
|
* Range reduction is accomplished by separating the argument
|
|
|
|
* into an integer k and fraction f such that
|
|
|
|
*
|
|
|
|
* x k f
|
|
|
|
* e = 2 e.
|
|
|
|
*
|
|
|
|
* A Pade' form of degree 2/3 is used to approximate exp(f) - 1
|
|
|
|
* in the basic range [-0.5 ln 2, 0.5 ln 2].
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* ACCURACY:
|
|
|
|
*
|
|
|
|
* Relative error:
|
|
|
|
* arithmetic domain # trials peak rms
|
|
|
|
* IEEE +-10000 50000 1.12e-19 2.81e-20
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Error amplification in the exponential function can be
|
|
|
|
* a serious matter. The error propagation involves
|
|
|
|
* exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
|
|
|
|
* which shows that a 1 lsb error in representing X produces
|
|
|
|
* a relative error of X times 1 lsb in the function.
|
|
|
|
* While the routine gives an accurate result for arguments
|
|
|
|
* that are exactly represented by a long double precision
|
|
|
|
* computer number, the result contains amplified roundoff
|
|
|
|
* error for large arguments not exactly represented.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* ERROR MESSAGES:
|
|
|
|
*
|
|
|
|
* message condition value returned
|
|
|
|
* exp underflow x < MINLOG 0.0
|
|
|
|
* exp overflow x > MAXLOG MAXNUM
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Exponential function */
|
|
|
|
|
2015-01-11 23:34:27 +01:00
|
|
|
#include <openlibm_math.h>
|
2014-12-04 18:41:16 +01:00
|
|
|
|
|
|
|
#include "math_private.h"
|
|
|
|
|
|
|
|
static long double P[3] = {
|
|
|
|
1.2617719307481059087798E-4L,
|
|
|
|
3.0299440770744196129956E-2L,
|
|
|
|
9.9999999999999999991025E-1L,
|
|
|
|
};
|
|
|
|
static long double Q[4] = {
|
|
|
|
3.0019850513866445504159E-6L,
|
|
|
|
2.5244834034968410419224E-3L,
|
|
|
|
2.2726554820815502876593E-1L,
|
|
|
|
2.0000000000000000000897E0L,
|
|
|
|
};
|
|
|
|
static const long double C1 = 6.9314575195312500000000E-1L;
|
|
|
|
static const long double C2 = 1.4286068203094172321215E-6L;
|
|
|
|
static const long double MAXLOGL = 1.1356523406294143949492E4L;
|
|
|
|
static const long double MINLOGL = -1.13994985314888605586758E4L;
|
|
|
|
static const long double LOG2EL = 1.4426950408889634073599E0L;
|
|
|
|
|
|
|
|
long double
|
|
|
|
expl(long double x)
|
|
|
|
{
|
|
|
|
long double px, xx;
|
|
|
|
int n;
|
|
|
|
|
|
|
|
if( isnan(x) )
|
|
|
|
return(x);
|
|
|
|
if( x > MAXLOGL)
|
|
|
|
return( INFINITY );
|
|
|
|
|
|
|
|
if( x < MINLOGL )
|
|
|
|
return(0.0L);
|
|
|
|
|
|
|
|
/* Express e**x = e**g 2**n
|
|
|
|
* = e**g e**( n loge(2) )
|
|
|
|
* = e**( g + n loge(2) )
|
|
|
|
*/
|
|
|
|
px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */
|
|
|
|
n = px;
|
|
|
|
x -= px * C1;
|
|
|
|
x -= px * C2;
|
|
|
|
|
|
|
|
|
|
|
|
/* rational approximation for exponential
|
|
|
|
* of the fractional part:
|
|
|
|
* e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
|
|
|
|
*/
|
|
|
|
xx = x * x;
|
|
|
|
px = x * __polevll( xx, P, 2 );
|
|
|
|
x = px/( __polevll( xx, Q, 3 ) - px );
|
|
|
|
x = 1.0L + ldexpl( x, 1 );
|
|
|
|
|
|
|
|
x = ldexpl( x, n );
|
|
|
|
return(x);
|
|
|
|
}
|