2014-12-04 18:41:16 +01:00
|
|
|
/* $OpenBSD: e_tgammal.c,v 1.4 2013/11/12 20:35:19 martynas Exp $ */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* tgammal.c
|
|
|
|
*
|
|
|
|
* Gamma function
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* SYNOPSIS:
|
|
|
|
*
|
|
|
|
* long double x, y, tgammal();
|
|
|
|
*
|
|
|
|
* y = tgammal( x );
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* DESCRIPTION:
|
|
|
|
*
|
2015-01-08 09:49:31 +01:00
|
|
|
* Returns gamma function of the argument. The result is correctly
|
|
|
|
* signed. This variable is also filled in by the logarithmic gamma
|
2014-12-04 18:41:16 +01:00
|
|
|
* function lgamma().
|
|
|
|
*
|
|
|
|
* Arguments |x| <= 13 are reduced by recurrence and the function
|
|
|
|
* approximated by a rational function of degree 7/8 in the
|
|
|
|
* interval (2,3). Large arguments are handled by Stirling's
|
|
|
|
* formula. Large negative arguments are made positive using
|
|
|
|
* a reflection formula.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* ACCURACY:
|
|
|
|
*
|
|
|
|
* Relative error:
|
|
|
|
* arithmetic domain # trials peak rms
|
|
|
|
* IEEE -40,+40 10000 3.6e-19 7.9e-20
|
|
|
|
* IEEE -1755,+1755 10000 4.8e-18 6.5e-19
|
|
|
|
*
|
|
|
|
* Accuracy for large arguments is dominated by error in powl().
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <float.h>
|
2015-01-11 23:34:27 +01:00
|
|
|
#include <openlibm_math.h>
|
2014-12-04 18:41:16 +01:00
|
|
|
|
|
|
|
#include "math_private.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
|
|
|
|
0 <= x <= 1
|
|
|
|
Relative error
|
|
|
|
n=7, d=8
|
|
|
|
Peak error = 1.83e-20
|
|
|
|
Relative error spread = 8.4e-23
|
|
|
|
*/
|
|
|
|
|
|
|
|
static long double P[8] = {
|
|
|
|
4.212760487471622013093E-5L,
|
|
|
|
4.542931960608009155600E-4L,
|
|
|
|
4.092666828394035500949E-3L,
|
|
|
|
2.385363243461108252554E-2L,
|
|
|
|
1.113062816019361559013E-1L,
|
|
|
|
3.629515436640239168939E-1L,
|
|
|
|
8.378004301573126728826E-1L,
|
|
|
|
1.000000000000000000009E0L,
|
|
|
|
};
|
|
|
|
static long double Q[9] = {
|
|
|
|
-1.397148517476170440917E-5L,
|
|
|
|
2.346584059160635244282E-4L,
|
|
|
|
-1.237799246653152231188E-3L,
|
|
|
|
-7.955933682494738320586E-4L,
|
|
|
|
2.773706565840072979165E-2L,
|
|
|
|
-4.633887671244534213831E-2L,
|
|
|
|
-2.243510905670329164562E-1L,
|
|
|
|
4.150160950588455434583E-1L,
|
|
|
|
9.999999999999999999908E-1L,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
static long double P[] = {
|
|
|
|
-3.01525602666895735709e0L,
|
|
|
|
-3.25157411956062339893e1L,
|
|
|
|
-2.92929976820724030353e2L,
|
|
|
|
-1.70730828800510297666e3L,
|
|
|
|
-7.96667499622741999770e3L,
|
|
|
|
-2.59780216007146401957e4L,
|
|
|
|
-5.99650230220855581642e4L,
|
|
|
|
-7.15743521530849602425e4L
|
|
|
|
};
|
|
|
|
static long double Q[] = {
|
|
|
|
1.00000000000000000000e0L,
|
|
|
|
-1.67955233807178858919e1L,
|
|
|
|
8.85946791747759881659e1L,
|
|
|
|
5.69440799097468430177e1L,
|
|
|
|
-1.98526250512761318471e3L,
|
|
|
|
3.31667508019495079814e3L,
|
|
|
|
1.60577839621734713377e4L,
|
|
|
|
-2.97045081369399940529e4L,
|
|
|
|
-7.15743521530849602412e4L
|
|
|
|
};
|
|
|
|
*/
|
|
|
|
#define MAXGAML 1755.455L
|
|
|
|
/*static const long double LOGPI = 1.14472988584940017414L;*/
|
|
|
|
|
|
|
|
/* Stirling's formula for the gamma function
|
|
|
|
tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
|
|
|
|
z(x) = x
|
|
|
|
13 <= x <= 1024
|
|
|
|
Relative error
|
|
|
|
n=8, d=0
|
|
|
|
Peak error = 9.44e-21
|
|
|
|
Relative error spread = 8.8e-4
|
|
|
|
*/
|
|
|
|
|
|
|
|
static long double STIR[9] = {
|
|
|
|
7.147391378143610789273E-4L,
|
|
|
|
-2.363848809501759061727E-5L,
|
|
|
|
-5.950237554056330156018E-4L,
|
|
|
|
6.989332260623193171870E-5L,
|
|
|
|
7.840334842744753003862E-4L,
|
|
|
|
-2.294719747873185405699E-4L,
|
|
|
|
-2.681327161876304418288E-3L,
|
|
|
|
3.472222222230075327854E-3L,
|
|
|
|
8.333333333333331800504E-2L,
|
|
|
|
};
|
|
|
|
|
|
|
|
#define MAXSTIR 1024.0L
|
|
|
|
static const long double SQTPI = 2.50662827463100050242E0L;
|
|
|
|
|
|
|
|
/* 1/tgamma(x) = z P(z)
|
|
|
|
* z(x) = 1/x
|
|
|
|
* 0 < x < 0.03125
|
|
|
|
* Peak relative error 4.2e-23
|
|
|
|
*/
|
|
|
|
|
|
|
|
static long double S[9] = {
|
|
|
|
-1.193945051381510095614E-3L,
|
|
|
|
7.220599478036909672331E-3L,
|
|
|
|
-9.622023360406271645744E-3L,
|
|
|
|
-4.219773360705915470089E-2L,
|
|
|
|
1.665386113720805206758E-1L,
|
|
|
|
-4.200263503403344054473E-2L,
|
|
|
|
-6.558780715202540684668E-1L,
|
|
|
|
5.772156649015328608253E-1L,
|
|
|
|
1.000000000000000000000E0L,
|
|
|
|
};
|
|
|
|
|
|
|
|
/* 1/tgamma(-x) = z P(z)
|
|
|
|
* z(x) = 1/x
|
|
|
|
* 0 < x < 0.03125
|
|
|
|
* Peak relative error 5.16e-23
|
|
|
|
* Relative error spread = 2.5e-24
|
|
|
|
*/
|
|
|
|
|
|
|
|
static long double SN[9] = {
|
|
|
|
1.133374167243894382010E-3L,
|
|
|
|
7.220837261893170325704E-3L,
|
|
|
|
9.621911155035976733706E-3L,
|
|
|
|
-4.219773343731191721664E-2L,
|
|
|
|
-1.665386113944413519335E-1L,
|
|
|
|
-4.200263503402112910504E-2L,
|
|
|
|
6.558780715202536547116E-1L,
|
|
|
|
5.772156649015328608727E-1L,
|
|
|
|
-1.000000000000000000000E0L,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const long double PIL = 3.1415926535897932384626L;
|
|
|
|
|
|
|
|
static long double stirf ( long double );
|
|
|
|
|
|
|
|
/* Gamma function computed by Stirling's formula.
|
|
|
|
*/
|
|
|
|
static long double stirf(long double x)
|
|
|
|
{
|
|
|
|
long double y, w, v;
|
|
|
|
|
|
|
|
w = 1.0L/x;
|
|
|
|
/* For large x, use rational coefficients from the analytical expansion. */
|
|
|
|
if( x > 1024.0L )
|
|
|
|
w = (((((6.97281375836585777429E-5L * w
|
|
|
|
+ 7.84039221720066627474E-4L) * w
|
|
|
|
- 2.29472093621399176955E-4L) * w
|
|
|
|
- 2.68132716049382716049E-3L) * w
|
|
|
|
+ 3.47222222222222222222E-3L) * w
|
|
|
|
+ 8.33333333333333333333E-2L) * w
|
|
|
|
+ 1.0L;
|
|
|
|
else
|
|
|
|
w = 1.0L + w * __polevll( w, STIR, 8 );
|
|
|
|
y = expl(x);
|
|
|
|
if( x > MAXSTIR )
|
|
|
|
{ /* Avoid overflow in pow() */
|
|
|
|
v = powl( x, 0.5L * x - 0.25L );
|
|
|
|
y = v * (v / y);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
y = powl( x, x - 0.5L ) / y;
|
|
|
|
}
|
|
|
|
y = SQTPI * y * w;
|
|
|
|
return( y );
|
|
|
|
}
|
|
|
|
|
|
|
|
long double
|
|
|
|
tgammal(long double x)
|
|
|
|
{
|
|
|
|
long double p, q, z;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if( isnan(x) )
|
|
|
|
return(NAN);
|
|
|
|
if(x == INFINITY)
|
|
|
|
return(INFINITY);
|
|
|
|
if(x == -INFINITY)
|
|
|
|
return(x - x);
|
|
|
|
if( x == 0.0L )
|
|
|
|
return( 1.0L / x );
|
|
|
|
q = fabsl(x);
|
|
|
|
|
|
|
|
if( q > 13.0L )
|
|
|
|
{
|
2015-01-08 09:49:31 +01:00
|
|
|
int sign = 1;
|
2014-12-04 18:41:16 +01:00
|
|
|
if( q > MAXGAML )
|
|
|
|
goto goverf;
|
|
|
|
if( x < 0.0L )
|
|
|
|
{
|
|
|
|
p = floorl(q);
|
|
|
|
if( p == q )
|
|
|
|
return (x - x) / (x - x);
|
|
|
|
i = p;
|
|
|
|
if( (i & 1) == 0 )
|
2015-01-08 09:49:31 +01:00
|
|
|
sign = -1;
|
2014-12-04 18:41:16 +01:00
|
|
|
z = q - p;
|
|
|
|
if( z > 0.5L )
|
|
|
|
{
|
|
|
|
p += 1.0L;
|
|
|
|
z = q - p;
|
|
|
|
}
|
|
|
|
z = q * sinl( PIL * z );
|
|
|
|
z = fabsl(z) * stirf(q);
|
|
|
|
if( z <= PIL/LDBL_MAX )
|
|
|
|
{
|
|
|
|
goverf:
|
2015-01-08 09:49:31 +01:00
|
|
|
return( sign * INFINITY);
|
2014-12-04 18:41:16 +01:00
|
|
|
}
|
|
|
|
z = PIL/z;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
z = stirf(x);
|
|
|
|
}
|
2015-01-08 09:49:31 +01:00
|
|
|
return( sign * z );
|
2014-12-04 18:41:16 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
z = 1.0L;
|
|
|
|
while( x >= 3.0L )
|
|
|
|
{
|
|
|
|
x -= 1.0L;
|
|
|
|
z *= x;
|
|
|
|
}
|
|
|
|
|
|
|
|
while( x < -0.03125L )
|
|
|
|
{
|
|
|
|
z /= x;
|
|
|
|
x += 1.0L;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( x <= 0.03125L )
|
|
|
|
goto small;
|
|
|
|
|
|
|
|
while( x < 2.0L )
|
|
|
|
{
|
|
|
|
z /= x;
|
|
|
|
x += 1.0L;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( x == 2.0L )
|
|
|
|
return(z);
|
|
|
|
|
|
|
|
x -= 2.0L;
|
|
|
|
p = __polevll( x, P, 7 );
|
|
|
|
q = __polevll( x, Q, 8 );
|
|
|
|
z = z * p / q;
|
|
|
|
return z;
|
|
|
|
|
|
|
|
small:
|
|
|
|
if( x == 0.0L )
|
|
|
|
return (x - x) / (x - x);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if( x < 0.0L )
|
|
|
|
{
|
|
|
|
x = -x;
|
|
|
|
q = z / (x * __polevll( x, SN, 8 ));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
q = z / (x * __polevll( x, S, 8 ));
|
|
|
|
}
|
|
|
|
return q;
|
|
|
|
}
|