mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
506 lines
17 KiB
FortranFixed
506 lines
17 KiB
FortranFixed
|
SUBROUTINE ZUNK2(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM,
|
||
|
* ALIM)
|
||
|
C***BEGIN PROLOGUE ZUNK2
|
||
|
C***REFER TO ZBESK
|
||
|
C
|
||
|
C ZUNK2 COMPUTES K(FNU,Z) AND ITS ANALYTIC CONTINUATION FROM THE
|
||
|
C RIGHT HALF PLANE TO THE LEFT HALF PLANE BY MEANS OF THE
|
||
|
C UNIFORM ASYMPTOTIC EXPANSIONS FOR H(KIND,FNU,ZN) AND J(FNU,ZN)
|
||
|
C WHERE ZN IS IN THE RIGHT HALF PLANE, KIND=(3-MR)/2, MR=+1 OR
|
||
|
C -1. HERE ZN=ZR*I OR -ZR*I WHERE ZR=Z IF Z IS IN THE RIGHT
|
||
|
C HALF PLANE OR ZR=-Z IF Z IS IN THE LEFT HALF PLANE. MR INDIC-
|
||
|
C ATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION.
|
||
|
C NZ=-1 MEANS AN OVERFLOW WILL OCCUR
|
||
|
C
|
||
|
C***ROUTINES CALLED ZAIRY,ZKSCL,ZS1S2,ZUCHK,ZUNHJ,D1MACH,ZABS
|
||
|
C***END PROLOGUE ZUNK2
|
||
|
C COMPLEX AI,ARG,ARGD,ASUM,ASUMD,BSUM,BSUMD,CFN,CI,CIP,CK,CONE,CRSC,
|
||
|
C *CR1,CR2,CS,CSCL,CSGN,CSPN,CSR,CSS,CY,CZERO,C1,C2,DAI,PHI,PHID,RZ,
|
||
|
C *S1,S2,Y,Z,ZB,ZETA1,ZETA1D,ZETA2,ZETA2D,ZN,ZR
|
||
|
DOUBLE PRECISION AARG, AIC, AII, AIR, ALIM, ANG, APHI, ARGDI,
|
||
|
* ARGDR, ARGI, ARGR, ASC, ASCLE, ASUMDI, ASUMDR, ASUMI, ASUMR,
|
||
|
* BRY, BSUMDI, BSUMDR, BSUMI, BSUMR, CAR, CIPI, CIPR, CKI, CKR,
|
||
|
* CONER, CRSC, CR1I, CR1R, CR2I, CR2R, CSCL, CSGNI, CSI,
|
||
|
* CSPNI, CSPNR, CSR, CSRR, CSSR, CYI, CYR, C1I, C1R, C2I, C2M,
|
||
|
* C2R, DAII, DAIR, ELIM, FMR, FN, FNF, FNU, HPI, PHIDI, PHIDR,
|
||
|
* PHII, PHIR, PI, PTI, PTR, RAST, RAZR, RS1, RZI, RZR, SAR, SGN,
|
||
|
* STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, YY, ZBI, ZBR, ZEROI,
|
||
|
* ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZET1DI, ZET1DR, ZET2DI,
|
||
|
* ZET2DR, ZI, ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, ZABS
|
||
|
INTEGER I, IB, IFLAG, IFN, IL, IN, INU, IUF, K, KDFLG, KFLAG, KK,
|
||
|
* KODE, MR, N, NAI, NDAI, NW, NZ, IDUM, J, IPARD, IC
|
||
|
DIMENSION BRY(3), YR(N), YI(N), ASUMR(2), ASUMI(2), BSUMR(2),
|
||
|
* BSUMI(2), PHIR(2), PHII(2), ARGR(2), ARGI(2), ZETA1R(2),
|
||
|
* ZETA1I(2), ZETA2R(2), ZETA2I(2), CYR(2), CYI(2), CIPR(4),
|
||
|
* CIPI(4), CSSR(3), CSRR(3)
|
||
|
DATA ZEROR,ZEROI,CONER,CR1R,CR1I,CR2R,CR2I /
|
||
|
1 0.0D0, 0.0D0, 1.0D0,
|
||
|
1 1.0D0,1.73205080756887729D0 , -0.5D0,-8.66025403784438647D-01 /
|
||
|
DATA HPI, PI, AIC /
|
||
|
1 1.57079632679489662D+00, 3.14159265358979324D+00,
|
||
|
1 1.26551212348464539D+00/
|
||
|
DATA CIPR(1),CIPI(1),CIPR(2),CIPI(2),CIPR(3),CIPI(3),CIPR(4),
|
||
|
* CIPI(4) /
|
||
|
1 1.0D0,0.0D0 , 0.0D0,-1.0D0 , -1.0D0,0.0D0 , 0.0D0,1.0D0 /
|
||
|
C
|
||
|
KDFLG = 1
|
||
|
NZ = 0
|
||
|
C-----------------------------------------------------------------------
|
||
|
C EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION GREATER THAN
|
||
|
C THE UNDERFLOW LIMIT
|
||
|
C-----------------------------------------------------------------------
|
||
|
CSCL = 1.0D0/TOL
|
||
|
CRSC = TOL
|
||
|
CSSR(1) = CSCL
|
||
|
CSSR(2) = CONER
|
||
|
CSSR(3) = CRSC
|
||
|
CSRR(1) = CRSC
|
||
|
CSRR(2) = CONER
|
||
|
CSRR(3) = CSCL
|
||
|
BRY(1) = 1.0D+3*D1MACH(1)/TOL
|
||
|
BRY(2) = 1.0D0/BRY(1)
|
||
|
BRY(3) = D1MACH(2)
|
||
|
ZRR = ZR
|
||
|
ZRI = ZI
|
||
|
IF (ZR.GE.0.0D0) GO TO 10
|
||
|
ZRR = -ZR
|
||
|
ZRI = -ZI
|
||
|
10 CONTINUE
|
||
|
YY = ZRI
|
||
|
ZNR = ZRI
|
||
|
ZNI = -ZRR
|
||
|
ZBR = ZRR
|
||
|
ZBI = ZRI
|
||
|
INU = INT(SNGL(FNU))
|
||
|
FNF = FNU - DBLE(FLOAT(INU))
|
||
|
ANG = -HPI*FNF
|
||
|
CAR = DCOS(ANG)
|
||
|
SAR = DSIN(ANG)
|
||
|
C2R = HPI*SAR
|
||
|
C2I = -HPI*CAR
|
||
|
KK = MOD(INU,4) + 1
|
||
|
STR = C2R*CIPR(KK) - C2I*CIPI(KK)
|
||
|
STI = C2R*CIPI(KK) + C2I*CIPR(KK)
|
||
|
CSR = CR1R*STR - CR1I*STI
|
||
|
CSI = CR1R*STI + CR1I*STR
|
||
|
IF (YY.GT.0.0D0) GO TO 20
|
||
|
ZNR = -ZNR
|
||
|
ZBI = -ZBI
|
||
|
20 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C K(FNU,Z) IS COMPUTED FROM H(2,FNU,-I*Z) WHERE Z IS IN THE FIRST
|
||
|
C QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY
|
||
|
C CONJUGATION SINCE THE K FUNCTION IS REAL ON THE POSITIVE REAL AXIS
|
||
|
C-----------------------------------------------------------------------
|
||
|
J = 2
|
||
|
DO 80 I=1,N
|
||
|
C-----------------------------------------------------------------------
|
||
|
C J FLIP FLOPS BETWEEN 1 AND 2 IN J = 3 - J
|
||
|
C-----------------------------------------------------------------------
|
||
|
J = 3 - J
|
||
|
FN = FNU + DBLE(FLOAT(I-1))
|
||
|
CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIR(J), PHII(J), ARGR(J),
|
||
|
* ARGI(J), ZETA1R(J), ZETA1I(J), ZETA2R(J), ZETA2I(J), ASUMR(J),
|
||
|
* ASUMI(J), BSUMR(J), BSUMI(J))
|
||
|
IF (KODE.EQ.1) GO TO 30
|
||
|
STR = ZBR + ZETA2R(J)
|
||
|
STI = ZBI + ZETA2I(J)
|
||
|
RAST = FN/ZABS(COMPLEX(STR,STI))
|
||
|
STR = STR*RAST*RAST
|
||
|
STI = -STI*RAST*RAST
|
||
|
S1R = ZETA1R(J) - STR
|
||
|
S1I = ZETA1I(J) - STI
|
||
|
GO TO 40
|
||
|
30 CONTINUE
|
||
|
S1R = ZETA1R(J) - ZETA2R(J)
|
||
|
S1I = ZETA1I(J) - ZETA2I(J)
|
||
|
40 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C TEST FOR UNDERFLOW AND OVERFLOW
|
||
|
C-----------------------------------------------------------------------
|
||
|
RS1 = S1R
|
||
|
IF (DABS(RS1).GT.ELIM) GO TO 70
|
||
|
IF (KDFLG.EQ.1) KFLAG = 2
|
||
|
IF (DABS(RS1).LT.ALIM) GO TO 50
|
||
|
C-----------------------------------------------------------------------
|
||
|
C REFINE TEST AND SCALE
|
||
|
C-----------------------------------------------------------------------
|
||
|
APHI = ZABS(COMPLEX(PHIR(J),PHII(J)))
|
||
|
AARG = ZABS(COMPLEX(ARGR(J),ARGI(J)))
|
||
|
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
|
||
|
IF (DABS(RS1).GT.ELIM) GO TO 70
|
||
|
IF (KDFLG.EQ.1) KFLAG = 1
|
||
|
IF (RS1.LT.0.0D0) GO TO 50
|
||
|
IF (KDFLG.EQ.1) KFLAG = 3
|
||
|
50 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR
|
||
|
C EXPONENT EXTREMES
|
||
|
C-----------------------------------------------------------------------
|
||
|
C2R = ARGR(J)*CR2R - ARGI(J)*CR2I
|
||
|
C2I = ARGR(J)*CR2I + ARGI(J)*CR2R
|
||
|
CALL ZAIRY(C2R, C2I, 0, 2, AIR, AII, NAI, IDUM)
|
||
|
CALL ZAIRY(C2R, C2I, 1, 2, DAIR, DAII, NDAI, IDUM)
|
||
|
STR = DAIR*BSUMR(J) - DAII*BSUMI(J)
|
||
|
STI = DAIR*BSUMI(J) + DAII*BSUMR(J)
|
||
|
PTR = STR*CR2R - STI*CR2I
|
||
|
PTI = STR*CR2I + STI*CR2R
|
||
|
STR = PTR + (AIR*ASUMR(J)-AII*ASUMI(J))
|
||
|
STI = PTI + (AIR*ASUMI(J)+AII*ASUMR(J))
|
||
|
PTR = STR*PHIR(J) - STI*PHII(J)
|
||
|
PTI = STR*PHII(J) + STI*PHIR(J)
|
||
|
S2R = PTR*CSR - PTI*CSI
|
||
|
S2I = PTR*CSI + PTI*CSR
|
||
|
STR = DEXP(S1R)*CSSR(KFLAG)
|
||
|
S1R = STR*DCOS(S1I)
|
||
|
S1I = STR*DSIN(S1I)
|
||
|
STR = S2R*S1R - S2I*S1I
|
||
|
S2I = S1R*S2I + S2R*S1I
|
||
|
S2R = STR
|
||
|
IF (KFLAG.NE.1) GO TO 60
|
||
|
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
|
||
|
IF (NW.NE.0) GO TO 70
|
||
|
60 CONTINUE
|
||
|
IF (YY.LE.0.0D0) S2I = -S2I
|
||
|
CYR(KDFLG) = S2R
|
||
|
CYI(KDFLG) = S2I
|
||
|
YR(I) = S2R*CSRR(KFLAG)
|
||
|
YI(I) = S2I*CSRR(KFLAG)
|
||
|
STR = CSI
|
||
|
CSI = -CSR
|
||
|
CSR = STR
|
||
|
IF (KDFLG.EQ.2) GO TO 85
|
||
|
KDFLG = 2
|
||
|
GO TO 80
|
||
|
70 CONTINUE
|
||
|
IF (RS1.GT.0.0D0) GO TO 320
|
||
|
C-----------------------------------------------------------------------
|
||
|
C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW
|
||
|
C-----------------------------------------------------------------------
|
||
|
IF (ZR.LT.0.0D0) GO TO 320
|
||
|
KDFLG = 1
|
||
|
YR(I)=ZEROR
|
||
|
YI(I)=ZEROI
|
||
|
NZ=NZ+1
|
||
|
STR = CSI
|
||
|
CSI =-CSR
|
||
|
CSR = STR
|
||
|
IF (I.EQ.1) GO TO 80
|
||
|
IF ((YR(I-1).EQ.ZEROR).AND.(YI(I-1).EQ.ZEROI)) GO TO 80
|
||
|
YR(I-1)=ZEROR
|
||
|
YI(I-1)=ZEROI
|
||
|
NZ=NZ+1
|
||
|
80 CONTINUE
|
||
|
I = N
|
||
|
85 CONTINUE
|
||
|
RAZR = 1.0D0/ZABS(COMPLEX(ZRR,ZRI))
|
||
|
STR = ZRR*RAZR
|
||
|
STI = -ZRI*RAZR
|
||
|
RZR = (STR+STR)*RAZR
|
||
|
RZI = (STI+STI)*RAZR
|
||
|
CKR = FN*RZR
|
||
|
CKI = FN*RZI
|
||
|
IB = I + 1
|
||
|
IF (N.LT.IB) GO TO 180
|
||
|
C-----------------------------------------------------------------------
|
||
|
C TEST LAST MEMBER FOR UNDERFLOW AND OVERFLOW. SET SEQUENCE TO ZERO
|
||
|
C ON UNDERFLOW.
|
||
|
C-----------------------------------------------------------------------
|
||
|
FN = FNU + DBLE(FLOAT(N-1))
|
||
|
IPARD = 1
|
||
|
IF (MR.NE.0) IPARD = 0
|
||
|
CALL ZUNHJ(ZNR, ZNI, FN, IPARD, TOL, PHIDR, PHIDI, ARGDR, ARGDI,
|
||
|
* ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR, ASUMDI, BSUMDR, BSUMDI)
|
||
|
IF (KODE.EQ.1) GO TO 90
|
||
|
STR = ZBR + ZET2DR
|
||
|
STI = ZBI + ZET2DI
|
||
|
RAST = FN/ZABS(COMPLEX(STR,STI))
|
||
|
STR = STR*RAST*RAST
|
||
|
STI = -STI*RAST*RAST
|
||
|
S1R = ZET1DR - STR
|
||
|
S1I = ZET1DI - STI
|
||
|
GO TO 100
|
||
|
90 CONTINUE
|
||
|
S1R = ZET1DR - ZET2DR
|
||
|
S1I = ZET1DI - ZET2DI
|
||
|
100 CONTINUE
|
||
|
RS1 = S1R
|
||
|
IF (DABS(RS1).GT.ELIM) GO TO 105
|
||
|
IF (DABS(RS1).LT.ALIM) GO TO 120
|
||
|
C----------------------------------------------------------------------------
|
||
|
C REFINE ESTIMATE AND TEST
|
||
|
C-------------------------------------------------------------------------
|
||
|
APHI = ZABS(COMPLEX(PHIDR,PHIDI))
|
||
|
RS1 = RS1+DLOG(APHI)
|
||
|
IF (DABS(RS1).LT.ELIM) GO TO 120
|
||
|
105 CONTINUE
|
||
|
IF (RS1.GT.0.0D0) GO TO 320
|
||
|
C-----------------------------------------------------------------------
|
||
|
C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW
|
||
|
C-----------------------------------------------------------------------
|
||
|
IF (ZR.LT.0.0D0) GO TO 320
|
||
|
NZ = N
|
||
|
DO 106 I=1,N
|
||
|
YR(I) = ZEROR
|
||
|
YI(I) = ZEROI
|
||
|
106 CONTINUE
|
||
|
RETURN
|
||
|
120 CONTINUE
|
||
|
S1R = CYR(1)
|
||
|
S1I = CYI(1)
|
||
|
S2R = CYR(2)
|
||
|
S2I = CYI(2)
|
||
|
C1R = CSRR(KFLAG)
|
||
|
ASCLE = BRY(KFLAG)
|
||
|
DO 130 I=IB,N
|
||
|
C2R = S2R
|
||
|
C2I = S2I
|
||
|
S2R = CKR*C2R - CKI*C2I + S1R
|
||
|
S2I = CKR*C2I + CKI*C2R + S1I
|
||
|
S1R = C2R
|
||
|
S1I = C2I
|
||
|
CKR = CKR + RZR
|
||
|
CKI = CKI + RZI
|
||
|
C2R = S2R*C1R
|
||
|
C2I = S2I*C1R
|
||
|
YR(I) = C2R
|
||
|
YI(I) = C2I
|
||
|
IF (KFLAG.GE.3) GO TO 130
|
||
|
STR = DABS(C2R)
|
||
|
STI = DABS(C2I)
|
||
|
C2M = DMAX1(STR,STI)
|
||
|
IF (C2M.LE.ASCLE) GO TO 130
|
||
|
KFLAG = KFLAG + 1
|
||
|
ASCLE = BRY(KFLAG)
|
||
|
S1R = S1R*C1R
|
||
|
S1I = S1I*C1R
|
||
|
S2R = C2R
|
||
|
S2I = C2I
|
||
|
S1R = S1R*CSSR(KFLAG)
|
||
|
S1I = S1I*CSSR(KFLAG)
|
||
|
S2R = S2R*CSSR(KFLAG)
|
||
|
S2I = S2I*CSSR(KFLAG)
|
||
|
C1R = CSRR(KFLAG)
|
||
|
130 CONTINUE
|
||
|
180 CONTINUE
|
||
|
IF (MR.EQ.0) RETURN
|
||
|
C-----------------------------------------------------------------------
|
||
|
C ANALYTIC CONTINUATION FOR RE(Z).LT.0.0D0
|
||
|
C-----------------------------------------------------------------------
|
||
|
NZ = 0
|
||
|
FMR = DBLE(FLOAT(MR))
|
||
|
SGN = -DSIGN(PI,FMR)
|
||
|
C-----------------------------------------------------------------------
|
||
|
C CSPN AND CSGN ARE COEFF OF K AND I FUNCIONS RESP.
|
||
|
C-----------------------------------------------------------------------
|
||
|
CSGNI = SGN
|
||
|
IF (YY.LE.0.0D0) CSGNI = -CSGNI
|
||
|
IFN = INU + N - 1
|
||
|
ANG = FNF*SGN
|
||
|
CSPNR = DCOS(ANG)
|
||
|
CSPNI = DSIN(ANG)
|
||
|
IF (MOD(IFN,2).EQ.0) GO TO 190
|
||
|
CSPNR = -CSPNR
|
||
|
CSPNI = -CSPNI
|
||
|
190 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C CS=COEFF OF THE J FUNCTION TO GET THE I FUNCTION. I(FNU,Z) IS
|
||
|
C COMPUTED FROM EXP(I*FNU*HPI)*J(FNU,-I*Z) WHERE Z IS IN THE FIRST
|
||
|
C QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY
|
||
|
C CONJUGATION SINCE THE I FUNCTION IS REAL ON THE POSITIVE REAL AXIS
|
||
|
C-----------------------------------------------------------------------
|
||
|
CSR = SAR*CSGNI
|
||
|
CSI = CAR*CSGNI
|
||
|
IN = MOD(IFN,4) + 1
|
||
|
C2R = CIPR(IN)
|
||
|
C2I = CIPI(IN)
|
||
|
STR = CSR*C2R + CSI*C2I
|
||
|
CSI = -CSR*C2I + CSI*C2R
|
||
|
CSR = STR
|
||
|
ASC = BRY(1)
|
||
|
IUF = 0
|
||
|
KK = N
|
||
|
KDFLG = 1
|
||
|
IB = IB - 1
|
||
|
IC = IB - 1
|
||
|
DO 290 K=1,N
|
||
|
FN = FNU + DBLE(FLOAT(KK-1))
|
||
|
C-----------------------------------------------------------------------
|
||
|
C LOGIC TO SORT OUT CASES WHOSE PARAMETERS WERE SET FOR THE K
|
||
|
C FUNCTION ABOVE
|
||
|
C-----------------------------------------------------------------------
|
||
|
IF (N.GT.2) GO TO 175
|
||
|
172 CONTINUE
|
||
|
PHIDR = PHIR(J)
|
||
|
PHIDI = PHII(J)
|
||
|
ARGDR = ARGR(J)
|
||
|
ARGDI = ARGI(J)
|
||
|
ZET1DR = ZETA1R(J)
|
||
|
ZET1DI = ZETA1I(J)
|
||
|
ZET2DR = ZETA2R(J)
|
||
|
ZET2DI = ZETA2I(J)
|
||
|
ASUMDR = ASUMR(J)
|
||
|
ASUMDI = ASUMI(J)
|
||
|
BSUMDR = BSUMR(J)
|
||
|
BSUMDI = BSUMI(J)
|
||
|
J = 3 - J
|
||
|
GO TO 210
|
||
|
175 CONTINUE
|
||
|
IF ((KK.EQ.N).AND.(IB.LT.N)) GO TO 210
|
||
|
IF ((KK.EQ.IB).OR.(KK.EQ.IC)) GO TO 172
|
||
|
CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIDR, PHIDI, ARGDR,
|
||
|
* ARGDI, ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR,
|
||
|
* ASUMDI, BSUMDR, BSUMDI)
|
||
|
210 CONTINUE
|
||
|
IF (KODE.EQ.1) GO TO 220
|
||
|
STR = ZBR + ZET2DR
|
||
|
STI = ZBI + ZET2DI
|
||
|
RAST = FN/ZABS(COMPLEX(STR,STI))
|
||
|
STR = STR*RAST*RAST
|
||
|
STI = -STI*RAST*RAST
|
||
|
S1R = -ZET1DR + STR
|
||
|
S1I = -ZET1DI + STI
|
||
|
GO TO 230
|
||
|
220 CONTINUE
|
||
|
S1R = -ZET1DR + ZET2DR
|
||
|
S1I = -ZET1DI + ZET2DI
|
||
|
230 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C TEST FOR UNDERFLOW AND OVERFLOW
|
||
|
C-----------------------------------------------------------------------
|
||
|
RS1 = S1R
|
||
|
IF (DABS(RS1).GT.ELIM) GO TO 280
|
||
|
IF (KDFLG.EQ.1) IFLAG = 2
|
||
|
IF (DABS(RS1).LT.ALIM) GO TO 240
|
||
|
C-----------------------------------------------------------------------
|
||
|
C REFINE TEST AND SCALE
|
||
|
C-----------------------------------------------------------------------
|
||
|
APHI = ZABS(COMPLEX(PHIDR,PHIDI))
|
||
|
AARG = ZABS(COMPLEX(ARGDR,ARGDI))
|
||
|
RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC
|
||
|
IF (DABS(RS1).GT.ELIM) GO TO 280
|
||
|
IF (KDFLG.EQ.1) IFLAG = 1
|
||
|
IF (RS1.LT.0.0D0) GO TO 240
|
||
|
IF (KDFLG.EQ.1) IFLAG = 3
|
||
|
240 CONTINUE
|
||
|
CALL ZAIRY(ARGDR, ARGDI, 0, 2, AIR, AII, NAI, IDUM)
|
||
|
CALL ZAIRY(ARGDR, ARGDI, 1, 2, DAIR, DAII, NDAI, IDUM)
|
||
|
STR = DAIR*BSUMDR - DAII*BSUMDI
|
||
|
STI = DAIR*BSUMDI + DAII*BSUMDR
|
||
|
STR = STR + (AIR*ASUMDR-AII*ASUMDI)
|
||
|
STI = STI + (AIR*ASUMDI+AII*ASUMDR)
|
||
|
PTR = STR*PHIDR - STI*PHIDI
|
||
|
PTI = STR*PHIDI + STI*PHIDR
|
||
|
S2R = PTR*CSR - PTI*CSI
|
||
|
S2I = PTR*CSI + PTI*CSR
|
||
|
STR = DEXP(S1R)*CSSR(IFLAG)
|
||
|
S1R = STR*DCOS(S1I)
|
||
|
S1I = STR*DSIN(S1I)
|
||
|
STR = S2R*S1R - S2I*S1I
|
||
|
S2I = S2R*S1I + S2I*S1R
|
||
|
S2R = STR
|
||
|
IF (IFLAG.NE.1) GO TO 250
|
||
|
CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL)
|
||
|
IF (NW.EQ.0) GO TO 250
|
||
|
S2R = ZEROR
|
||
|
S2I = ZEROI
|
||
|
250 CONTINUE
|
||
|
IF (YY.LE.0.0D0) S2I = -S2I
|
||
|
CYR(KDFLG) = S2R
|
||
|
CYI(KDFLG) = S2I
|
||
|
C2R = S2R
|
||
|
C2I = S2I
|
||
|
S2R = S2R*CSRR(IFLAG)
|
||
|
S2I = S2I*CSRR(IFLAG)
|
||
|
C-----------------------------------------------------------------------
|
||
|
C ADD I AND K FUNCTIONS, K SEQUENCE IN Y(I), I=1,N
|
||
|
C-----------------------------------------------------------------------
|
||
|
S1R = YR(KK)
|
||
|
S1I = YI(KK)
|
||
|
IF (KODE.EQ.1) GO TO 270
|
||
|
CALL ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NW, ASC, ALIM, IUF)
|
||
|
NZ = NZ + NW
|
||
|
270 CONTINUE
|
||
|
YR(KK) = S1R*CSPNR - S1I*CSPNI + S2R
|
||
|
YI(KK) = S1R*CSPNI + S1I*CSPNR + S2I
|
||
|
KK = KK - 1
|
||
|
CSPNR = -CSPNR
|
||
|
CSPNI = -CSPNI
|
||
|
STR = CSI
|
||
|
CSI = -CSR
|
||
|
CSR = STR
|
||
|
IF (C2R.NE.0.0D0 .OR. C2I.NE.0.0D0) GO TO 255
|
||
|
KDFLG = 1
|
||
|
GO TO 290
|
||
|
255 CONTINUE
|
||
|
IF (KDFLG.EQ.2) GO TO 295
|
||
|
KDFLG = 2
|
||
|
GO TO 290
|
||
|
280 CONTINUE
|
||
|
IF (RS1.GT.0.0D0) GO TO 320
|
||
|
S2R = ZEROR
|
||
|
S2I = ZEROI
|
||
|
GO TO 250
|
||
|
290 CONTINUE
|
||
|
K = N
|
||
|
295 CONTINUE
|
||
|
IL = N - K
|
||
|
IF (IL.EQ.0) RETURN
|
||
|
C-----------------------------------------------------------------------
|
||
|
C RECUR BACKWARD FOR REMAINDER OF I SEQUENCE AND ADD IN THE
|
||
|
C K FUNCTIONS, SCALING THE I SEQUENCE DURING RECURRENCE TO KEEP
|
||
|
C INTERMEDIATE ARITHMETIC ON SCALE NEAR EXPONENT EXTREMES.
|
||
|
C-----------------------------------------------------------------------
|
||
|
S1R = CYR(1)
|
||
|
S1I = CYI(1)
|
||
|
S2R = CYR(2)
|
||
|
S2I = CYI(2)
|
||
|
CSR = CSRR(IFLAG)
|
||
|
ASCLE = BRY(IFLAG)
|
||
|
FN = DBLE(FLOAT(INU+IL))
|
||
|
DO 310 I=1,IL
|
||
|
C2R = S2R
|
||
|
C2I = S2I
|
||
|
S2R = S1R + (FN+FNF)*(RZR*C2R-RZI*C2I)
|
||
|
S2I = S1I + (FN+FNF)*(RZR*C2I+RZI*C2R)
|
||
|
S1R = C2R
|
||
|
S1I = C2I
|
||
|
FN = FN - 1.0D0
|
||
|
C2R = S2R*CSR
|
||
|
C2I = S2I*CSR
|
||
|
CKR = C2R
|
||
|
CKI = C2I
|
||
|
C1R = YR(KK)
|
||
|
C1I = YI(KK)
|
||
|
IF (KODE.EQ.1) GO TO 300
|
||
|
CALL ZS1S2(ZRR, ZRI, C1R, C1I, C2R, C2I, NW, ASC, ALIM, IUF)
|
||
|
NZ = NZ + NW
|
||
|
300 CONTINUE
|
||
|
YR(KK) = C1R*CSPNR - C1I*CSPNI + C2R
|
||
|
YI(KK) = C1R*CSPNI + C1I*CSPNR + C2I
|
||
|
KK = KK - 1
|
||
|
CSPNR = -CSPNR
|
||
|
CSPNI = -CSPNI
|
||
|
IF (IFLAG.GE.3) GO TO 310
|
||
|
C2R = DABS(CKR)
|
||
|
C2I = DABS(CKI)
|
||
|
C2M = DMAX1(C2R,C2I)
|
||
|
IF (C2M.LE.ASCLE) GO TO 310
|
||
|
IFLAG = IFLAG + 1
|
||
|
ASCLE = BRY(IFLAG)
|
||
|
S1R = S1R*CSR
|
||
|
S1I = S1I*CSR
|
||
|
S2R = CKR
|
||
|
S2I = CKI
|
||
|
S1R = S1R*CSSR(IFLAG)
|
||
|
S1I = S1I*CSSR(IFLAG)
|
||
|
S2R = S2R*CSSR(IFLAG)
|
||
|
S2I = S2I*CSSR(IFLAG)
|
||
|
CSR = CSRR(IFLAG)
|
||
|
310 CONTINUE
|
||
|
RETURN
|
||
|
320 CONTINUE
|
||
|
NZ = -1
|
||
|
RETURN
|
||
|
END
|