OpenLibm/src/s_cbrt.c

118 lines
4.1 KiB
C
Raw Normal View History

/* @(#)s_cbrt.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* Optimized by Bruce D. Evans.
*/
#include "cdefs-compat.h"
2011-12-15 07:16:26 +01:00
//__FBSDID("$FreeBSD: src/lib/msun/src/s_cbrt.c,v 1.17 2011/03/12 16:50:39 kargl Exp $");
#include "openlibm.h"
#include "math_private.h"
/* cbrt(x)
* Return cube root of x
*/
static const u_int32_t
B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
/* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
static const double
P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
DLLEXPORT double
cbrt(double x)
{
int32_t hx;
union {
double value;
2011-12-16 06:39:32 +01:00
u_int64_t bits;
} u;
double r,s,t=0.0,w;
u_int32_t sign;
u_int32_t high,low;
EXTRACT_WORDS(hx,low,x);
sign=hx&0x80000000; /* sign= sign(x) */
hx ^=sign;
if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
/*
* Rough cbrt to 5 bits:
* cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
* where e is integral and >= 0, m is real and in [0, 1), and "/" and
* "%" are integer division and modulus with rounding towards minus
* infinity. The RHS is always >= the LHS and has a maximum relative
* error of about 1 in 16. Adding a bias of -0.03306235651 to the
* (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
* floating point representation, for finite positive normal values,
* ordinary integer divison of the value in bits magically gives
* almost exactly the RHS of the above provided we first subtract the
* exponent bias (1023 for doubles) and later add it back. We do the
* subtraction virtually to keep e >= 0 so that ordinary integer
* division rounds towards minus infinity; this is also efficient.
*/
if(hx<0x00100000) { /* zero or subnormal? */
if((hx|low)==0)
return(x); /* cbrt(0) is itself */
SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
t*=x;
GET_HIGH_WORD(high,t);
INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0);
} else
INSERT_WORDS(t,sign|(hx/3+B1),0);
/*
* New cbrt to 23 bits:
* cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
* where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
* to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
* has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
* gives us bounds for r = t**3/x.
*
* Try to optimize for parallel evaluation as in k_tanf.c.
*/
r=(t*t)*(t/x);
t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
/*
* Round t away from zero to 23 bits (sloppily except for ensuring that
* the result is larger in magnitude than cbrt(x) but not much more than
* 2 23-bit ulps larger). With rounding towards zero, the error bound
* would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
* in the rounded t, the infinite-precision error in the Newton
* approximation barely affects third digit in the final error
* 0.667; the error in the rounded t can be up to about 3 23-bit ulps
* before the final error is larger than 0.667 ulps.
*/
u.value=t;
u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL;
t=u.value;
/* one step Newton iteration to 53 bits with error < 0.667 ulps */
s=t*t; /* t*t is exact */
r=x/s; /* error <= 0.5 ulps; |r| < |t| */
w=t+t; /* t+t is exact */
r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
return(t);
}
#if (LDBL_MANT_DIG == 53)
__weak_reference(cbrt, cbrtl);
#endif