mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 11:12:29 +01:00
119 lines
3.5 KiB
FortranFixed
119 lines
3.5 KiB
FortranFixed
|
*DECK BETAI
|
||
|
REAL FUNCTION BETAI (X, PIN, QIN)
|
||
|
C***BEGIN PROLOGUE BETAI
|
||
|
C***PURPOSE Calculate the incomplete Beta function.
|
||
|
C***LIBRARY SLATEC (FNLIB)
|
||
|
C***CATEGORY C7F
|
||
|
C***TYPE SINGLE PRECISION (BETAI-S, DBETAI-D)
|
||
|
C***KEYWORDS FNLIB, INCOMPLETE BETA FUNCTION, SPECIAL FUNCTIONS
|
||
|
C***AUTHOR Fullerton, W., (LANL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C BETAI calculates the REAL incomplete beta function.
|
||
|
C
|
||
|
C The incomplete beta function ratio is the probability that a
|
||
|
C random variable from a beta distribution having parameters PIN and
|
||
|
C QIN will be less than or equal to X.
|
||
|
C
|
||
|
C -- Input Arguments -- All arguments are REAL.
|
||
|
C X upper limit of integration. X must be in (0,1) inclusive.
|
||
|
C PIN first beta distribution parameter. PIN must be .GT. 0.0.
|
||
|
C QIN second beta distribution parameter. QIN must be .GT. 0.0.
|
||
|
C
|
||
|
C***REFERENCES Nancy E. Bosten and E. L. Battiste, Remark on Algorithm
|
||
|
C 179, Communications of the ACM 17, 3 (March 1974),
|
||
|
C pp. 156.
|
||
|
C***ROUTINES CALLED ALBETA, R1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 770401 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890531 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
|
||
|
C***END PROLOGUE BETAI
|
||
|
LOGICAL FIRST
|
||
|
SAVE EPS, ALNEPS, SML, ALNSML, FIRST
|
||
|
DATA FIRST /.TRUE./
|
||
|
C***FIRST EXECUTABLE STATEMENT BETAI
|
||
|
IF (FIRST) THEN
|
||
|
EPS = R1MACH(3)
|
||
|
ALNEPS = LOG(EPS)
|
||
|
SML = R1MACH(1)
|
||
|
ALNSML = LOG(SML)
|
||
|
ENDIF
|
||
|
FIRST = .FALSE.
|
||
|
C
|
||
|
IF (X .LT. 0. .OR. X .GT. 1.0) CALL XERMSG ('SLATEC', 'BETAI',
|
||
|
+ 'X IS NOT IN THE RANGE (0,1)', 1, 2)
|
||
|
IF (PIN .LE. 0. .OR. QIN .LE. 0.) CALL XERMSG ('SLATEC', 'BETAI',
|
||
|
+ 'P AND/OR Q IS LE ZERO', 2, 2)
|
||
|
C
|
||
|
Y = X
|
||
|
P = PIN
|
||
|
Q = QIN
|
||
|
IF (Q.LE.P .AND. X.LT.0.8) GO TO 20
|
||
|
IF (X.LT.0.2) GO TO 20
|
||
|
Y = 1.0 - Y
|
||
|
P = QIN
|
||
|
Q = PIN
|
||
|
C
|
||
|
20 IF ((P+Q)*Y/(P+1.).LT.EPS) GO TO 80
|
||
|
C
|
||
|
C EVALUATE THE INFINITE SUM FIRST.
|
||
|
C TERM WILL EQUAL Y**P/BETA(PS,P) * (1.-PS)I * Y**I / FAC(I)
|
||
|
C
|
||
|
PS = Q - AINT(Q)
|
||
|
IF (PS.EQ.0.) PS = 1.0
|
||
|
XB = P*LOG(Y) - ALBETA(PS, P) - LOG(P)
|
||
|
BETAI = 0.0
|
||
|
IF (XB.LT.ALNSML) GO TO 40
|
||
|
C
|
||
|
BETAI = EXP (XB)
|
||
|
TERM = BETAI*P
|
||
|
IF (PS.EQ.1.0) GO TO 40
|
||
|
C
|
||
|
N = MAX (ALNEPS/LOG(Y), 4.0E0)
|
||
|
DO 30 I=1,N
|
||
|
TERM = TERM*(I-PS)*Y/I
|
||
|
BETAI = BETAI + TERM/(P+I)
|
||
|
30 CONTINUE
|
||
|
C
|
||
|
C NOW EVALUATE THE FINITE SUM, MAYBE.
|
||
|
C
|
||
|
40 IF (Q.LE.1.0) GO TO 70
|
||
|
C
|
||
|
XB = P*LOG(Y) + Q*LOG(1.0-Y) - ALBETA(P,Q) - LOG(Q)
|
||
|
IB = MAX (XB/ALNSML, 0.0E0)
|
||
|
TERM = EXP (XB - IB*ALNSML)
|
||
|
C = 1.0/(1.0-Y)
|
||
|
P1 = Q*C/(P+Q-1.)
|
||
|
C
|
||
|
FINSUM = 0.0
|
||
|
N = Q
|
||
|
IF (Q.EQ.REAL(N)) N = N - 1
|
||
|
DO 50 I=1,N
|
||
|
IF (P1.LE.1.0 .AND. TERM/EPS.LE.FINSUM) GO TO 60
|
||
|
TERM = (Q-I+1)*C*TERM/(P+Q-I)
|
||
|
C
|
||
|
IF (TERM.GT.1.0) IB = IB - 1
|
||
|
IF (TERM.GT.1.0) TERM = TERM*SML
|
||
|
C
|
||
|
IF (IB.EQ.0) FINSUM = FINSUM + TERM
|
||
|
50 CONTINUE
|
||
|
C
|
||
|
60 BETAI = BETAI + FINSUM
|
||
|
70 IF (Y.NE.X .OR. P.NE.PIN) BETAI = 1.0 - BETAI
|
||
|
BETAI = MAX (MIN (BETAI, 1.0), 0.0)
|
||
|
RETURN
|
||
|
C
|
||
|
80 BETAI = 0.0
|
||
|
XB = P*LOG(MAX(Y,SML)) - LOG(P) - ALBETA(P,Q)
|
||
|
IF (XB.GT.ALNSML .AND. Y.NE.0.) BETAI = EXP (XB)
|
||
|
IF (Y.NE.X .OR. P.NE.PIN) BETAI = 1.0 - BETAI
|
||
|
RETURN
|
||
|
C
|
||
|
END
|