OpenLibm/slatec/blktr1.f

250 lines
7.8 KiB
FortranFixed
Raw Normal View History

*DECK BLKTR1
SUBROUTINE BLKTR1 (N, AN, BN, CN, M, AM, BM, CM, IDIMY, Y, B, W1,
+ W2, W3, WD, WW, WU, PRDCT, CPRDCT)
C***BEGIN PROLOGUE BLKTR1
C***SUBSIDIARY
C***PURPOSE Subsidiary to BLKTRI
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (BLKTR1-S, CBLKT1-C)
C***AUTHOR (UNKNOWN)
C***DESCRIPTION
C
C BLKTR1 solves the linear system set up by BLKTRI.
C
C B contains the roots of all the B polynomials.
C W1,W2,W3,WD,WW,WU are all working arrays.
C PRDCT is either PRODP or PROD depending on whether the boundary
C conditions in the M direction are periodic or not.
C CPRDCT is either CPRODP or CPROD which are the complex versions
C of PRODP and PROD. These are called in the event that some
C of the roots of the B sub P polynomial are complex.
C
C***SEE ALSO BLKTRI
C***ROUTINES CALLED INDXA, INDXB, INDXC
C***COMMON BLOCKS CBLKT
C***REVISION HISTORY (YYMMDD)
C 801001 DATE WRITTEN
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900402 Added TYPE section. (WRB)
C***END PROLOGUE BLKTR1
C
DIMENSION AN(*) ,BN(*) ,CN(*) ,AM(*) ,
1 BM(*) ,CM(*) ,B(*) ,W1(*) ,
2 W2(*) ,W3(*) ,WD(*) ,WW(*) ,
3 WU(*) ,Y(IDIMY,*)
COMMON /CBLKT/ NPP ,K ,EPS ,CNV ,
1 NM ,NCMPLX ,IK
C***FIRST EXECUTABLE STATEMENT BLKTR1
KDO = K-1
DO 109 L=1,KDO
IR = L-1
I2 = 2**IR
I1 = I2/2
I3 = I2+I1
I4 = I2+I2
IRM1 = IR-1
CALL INDXB (I2,IR,IM2,NM2)
CALL INDXB (I1,IRM1,IM3,NM3)
CALL INDXB (I3,IRM1,IM1,NM1)
CALL PRDCT (NM2,B(IM2),NM3,B(IM3),NM1,B(IM1),0,DUM,Y(1,I2),W3,
1 M,AM,BM,CM,WD,WW,WU)
IF = 2**K
DO 108 I=I4,IF,I4
IF (I-NM) 101,101,108
101 IPI1 = I+I1
IPI2 = I+I2
IPI3 = I+I3
CALL INDXC (I,IR,IDXC,NC)
IF (I-IF) 102,108,108
102 CALL INDXA (I,IR,IDXA,NA)
CALL INDXB (I-I1,IRM1,IM1,NM1)
CALL INDXB (IPI2,IR,IP2,NP2)
CALL INDXB (IPI1,IRM1,IP1,NP1)
CALL INDXB (IPI3,IRM1,IP3,NP3)
CALL PRDCT (NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W3,W1,M,AM,
1 BM,CM,WD,WW,WU)
IF (IPI2-NM) 105,105,103
103 DO 104 J=1,M
W3(J) = 0.
W2(J) = 0.
104 CONTINUE
GO TO 106
105 CALL PRDCT (NP2,B(IP2),NP1,B(IP1),NP3,B(IP3),0,DUM,
1 Y(1,IPI2),W3,M,AM,BM,CM,WD,WW,WU)
CALL PRDCT (NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W3,W2,M,AM,
1 BM,CM,WD,WW,WU)
106 DO 107 J=1,M
Y(J,I) = W1(J)+W2(J)+Y(J,I)
107 CONTINUE
108 CONTINUE
109 CONTINUE
IF (NPP) 132,110,132
C
C THE PERIODIC CASE IS TREATED USING THE CAPACITANCE MATRIX METHOD
C
110 IF = 2**K
I = IF/2
I1 = I/2
CALL INDXB (I-I1,K-2,IM1,NM1)
CALL INDXB (I+I1,K-2,IP1,NP1)
CALL INDXB (I,K-1,IZ,NZ)
CALL PRDCT (NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,Y(1,I),W1,M,AM,
1 BM,CM,WD,WW,WU)
IZR = I
DO 111 J=1,M
W2(J) = W1(J)
111 CONTINUE
DO 113 LL=2,K
L = K-LL+1
IR = L-1
I2 = 2**IR
I1 = I2/2
I = I2
CALL INDXC (I,IR,IDXC,NC)
CALL INDXB (I,IR,IZ,NZ)
CALL INDXB (I-I1,IR-1,IM1,NM1)
CALL INDXB (I+I1,IR-1,IP1,NP1)
CALL PRDCT (NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W1,W1,M,AM,BM,
1 CM,WD,WW,WU)
DO 112 J=1,M
W1(J) = Y(J,I)+W1(J)
112 CONTINUE
CALL PRDCT (NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W1,W1,M,AM,
1 BM,CM,WD,WW,WU)
113 CONTINUE
DO 118 LL=2,K
L = K-LL+1
IR = L-1
I2 = 2**IR
I1 = I2/2
I4 = I2+I2
IFD = IF-I2
DO 117 I=I2,IFD,I4
IF (I-I2-IZR) 117,114,117
114 IF (I-NM) 115,115,118
115 CALL INDXA (I,IR,IDXA,NA)
CALL INDXB (I,IR,IZ,NZ)
CALL INDXB (I-I1,IR-1,IM1,NM1)
CALL INDXB (I+I1,IR-1,IP1,NP1)
CALL PRDCT (NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W2,W2,M,AM,
1 BM,CM,WD,WW,WU)
DO 116 J=1,M
W2(J) = Y(J,I)+W2(J)
116 CONTINUE
CALL PRDCT (NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W2,W2,M,
1 AM,BM,CM,WD,WW,WU)
IZR = I
IF (I-NM) 117,119,117
117 CONTINUE
118 CONTINUE
119 DO 120 J=1,M
Y(J,NM+1) = Y(J,NM+1)-CN(NM+1)*W1(J)-AN(NM+1)*W2(J)
120 CONTINUE
CALL INDXB (IF/2,K-1,IM1,NM1)
CALL INDXB (IF,K-1,IP,NP)
IF (NCMPLX) 121,122,121
121 CALL CPRDCT (NM+1,B(IP),NM1,B(IM1),0,DUM,0,DUM,Y(1,NM+1),
1 Y(1,NM+1),M,AM,BM,CM,W1,W3,WW)
GO TO 123
122 CALL PRDCT (NM+1,B(IP),NM1,B(IM1),0,DUM,0,DUM,Y(1,NM+1),
1 Y(1,NM+1),M,AM,BM,CM,WD,WW,WU)
123 DO 124 J=1,M
W1(J) = AN(1)*Y(J,NM+1)
W2(J) = CN(NM)*Y(J,NM+1)
Y(J,1) = Y(J,1)-W1(J)
Y(J,NM) = Y(J,NM)-W2(J)
124 CONTINUE
DO 126 L=1,KDO
IR = L-1
I2 = 2**IR
I4 = I2+I2
I1 = I2/2
I = I4
CALL INDXA (I,IR,IDXA,NA)
CALL INDXB (I-I2,IR,IM2,NM2)
CALL INDXB (I-I2-I1,IR-1,IM3,NM3)
CALL INDXB (I-I1,IR-1,IM1,NM1)
CALL PRDCT (NM2,B(IM2),NM3,B(IM3),NM1,B(IM1),0,DUM,W1,W1,M,AM,
1 BM,CM,WD,WW,WU)
CALL PRDCT (NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),W1,W1,M,AM,BM,
1 CM,WD,WW,WU)
DO 125 J=1,M
Y(J,I) = Y(J,I)-W1(J)
125 CONTINUE
126 CONTINUE
C
IZR = NM
DO 131 L=1,KDO
IR = L-1
I2 = 2**IR
I1 = I2/2
I3 = I2+I1
I4 = I2+I2
IRM1 = IR-1
DO 130 I=I4,IF,I4
IPI1 = I+I1
IPI2 = I+I2
IPI3 = I+I3
IF (IPI2-IZR) 127,128,127
127 IF (I-IZR) 130,131,130
128 CALL INDXC (I,IR,IDXC,NC)
CALL INDXB (IPI2,IR,IP2,NP2)
CALL INDXB (IPI1,IRM1,IP1,NP1)
CALL INDXB (IPI3,IRM1,IP3,NP3)
CALL PRDCT (NP2,B(IP2),NP1,B(IP1),NP3,B(IP3),0,DUM,W2,W2,M,
1 AM,BM,CM,WD,WW,WU)
CALL PRDCT (NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),W2,W2,M,AM,
1 BM,CM,WD,WW,WU)
DO 129 J=1,M
Y(J,I) = Y(J,I)-W2(J)
129 CONTINUE
IZR = I
GO TO 131
130 CONTINUE
131 CONTINUE
C
C BEGIN BACK SUBSTITUTION PHASE
C
132 DO 144 LL=1,K
L = K-LL+1
IR = L-1
IRM1 = IR-1
I2 = 2**IR
I1 = I2/2
I4 = I2+I2
IFD = IF-I2
DO 143 I=I2,IFD,I4
IF (I-NM) 133,133,143
133 IMI1 = I-I1
IMI2 = I-I2
IPI1 = I+I1
IPI2 = I+I2
CALL INDXA (I,IR,IDXA,NA)
CALL INDXC (I,IR,IDXC,NC)
CALL INDXB (I,IR,IZ,NZ)
CALL INDXB (IMI1,IRM1,IM1,NM1)
CALL INDXB (IPI1,IRM1,IP1,NP1)
IF (I-I2) 134,134,136
134 DO 135 J=1,M
W1(J) = 0.
135 CONTINUE
GO TO 137
136 CALL PRDCT (NM1,B(IM1),0,DUM,0,DUM,NA,AN(IDXA),Y(1,IMI2),
1 W1,M,AM,BM,CM,WD,WW,WU)
137 IF (IPI2-NM) 140,140,138
138 DO 139 J=1,M
W2(J) = 0.
139 CONTINUE
GO TO 141
140 CALL PRDCT (NP1,B(IP1),0,DUM,0,DUM,NC,CN(IDXC),Y(1,IPI2),
1 W2,M,AM,BM,CM,WD,WW,WU)
141 DO 142 J=1,M
W1(J) = Y(J,I)+W1(J)+W2(J)
142 CONTINUE
CALL PRDCT (NZ,B(IZ),NM1,B(IM1),NP1,B(IP1),0,DUM,W1,Y(1,I),
1 M,AM,BM,CM,WD,WW,WU)
143 CONTINUE
144 CONTINUE
RETURN
END