mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
194 lines
6.4 KiB
FortranFixed
194 lines
6.4 KiB
FortranFixed
|
*DECK BSGQ8
|
||
|
SUBROUTINE BSGQ8 (FUN, XT, BC, N, KK, ID, A, B, INBV, ERR, ANS,
|
||
|
+ IERR, WORK)
|
||
|
C***BEGIN PROLOGUE BSGQ8
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to BFQAD
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE SINGLE PRECISION (BSGQ8-S, DBSGQ8-D)
|
||
|
C***AUTHOR Jones, R. E., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Abstract
|
||
|
C BSGQ8, a modification of GAUS8, integrates the
|
||
|
C product of FUN(X) by the ID-th derivative of a spline
|
||
|
C BVALU(XT,BC,N,KK,ID,X,INBV,WORK) between limits A and B.
|
||
|
C
|
||
|
C Description of Arguments
|
||
|
C
|
||
|
C INPUT--
|
||
|
C FUN - Name of external function of one argument which
|
||
|
C multiplies BVALU.
|
||
|
C XT - Knot array for BVALU
|
||
|
C BC - B-coefficient array for BVALU
|
||
|
C N - Number of B-coefficients for BVALU
|
||
|
C KK - Order of the spline, KK.GE.1
|
||
|
C ID - Order of the spline derivative, 0.LE.ID.LE.KK-1
|
||
|
C A - Lower limit of integral
|
||
|
C B - Upper limit of integral (may be less than A)
|
||
|
C INBV- Initialization parameter for BVALU
|
||
|
C ERR - Is a requested pseudorelative error tolerance. Normally
|
||
|
C pick a value of ABS(ERR).LT.1E-3. ANS will normally
|
||
|
C have no more error than ABS(ERR) times the integral of
|
||
|
C the absolute value of FUN(X)*BVALU(XT,BC,N,KK,X,ID,
|
||
|
C INBV,WORK).
|
||
|
C
|
||
|
C
|
||
|
C OUTPUT--
|
||
|
C ERR - Will be an estimate of the absolute error in ANS if the
|
||
|
C input value of ERR was negative. (ERR is unchanged if
|
||
|
C the input value of ERR was nonnegative.) The estimated
|
||
|
C error is solely for information to the user and should
|
||
|
C not be used as a correction to the computed integral.
|
||
|
C ANS - Computed value of integral
|
||
|
C IERR- A status code
|
||
|
C --Normal Codes
|
||
|
C 1 ANS most likely meets requested error tolerance,
|
||
|
C or A=B.
|
||
|
C -1 A and B are too nearly equal to allow normal
|
||
|
C integration. ANS is set to zero.
|
||
|
C --Abnormal Code
|
||
|
C 2 ANS probably does not meet requested error tolerance.
|
||
|
C WORK- Work vector of length 3*K for BVALU
|
||
|
C
|
||
|
C***SEE ALSO BFQAD
|
||
|
C***ROUTINES CALLED BVALU, I1MACH, R1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800901 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C 910408 Updated the AUTHOR section. (WRB)
|
||
|
C***END PROLOGUE BSGQ8
|
||
|
C
|
||
|
INTEGER ID, IERR, INBV, K, KK, KML, KMX, L, LMN, LMX, LR, MXL,
|
||
|
1 N, NBITS, NIB, NLMN, NLMX
|
||
|
INTEGER I1MACH
|
||
|
REAL A, AA, AE, ANIB, ANS, AREA, B, BC, C, CE, EE, EF, EPS, ERR,
|
||
|
1 EST,GL,GLR,GR,HH,SQ2,TOL,VL,VR,WORK,W1, W2, W3, W4, XT, X1,
|
||
|
2 X2, X3, X4, X, H
|
||
|
REAL R1MACH, BVALU, G8, FUN
|
||
|
DIMENSION XT(*), BC(*)
|
||
|
DIMENSION AA(30), HH(30), LR(30), VL(30), GR(30)
|
||
|
SAVE X1, X2, X3, X4, W1, W2, W3, W4, SQ2, NLMN, KMX, KML
|
||
|
DATA X1, X2, X3, X4/
|
||
|
1 1.83434642495649805E-01, 5.25532409916328986E-01,
|
||
|
2 7.96666477413626740E-01, 9.60289856497536232E-01/
|
||
|
DATA W1, W2, W3, W4/
|
||
|
1 3.62683783378361983E-01, 3.13706645877887287E-01,
|
||
|
2 2.22381034453374471E-01, 1.01228536290376259E-01/
|
||
|
DATA SQ2/1.41421356E0/
|
||
|
DATA NLMN/1/,KMX/5000/,KML/6/
|
||
|
G8(X,H)=H*((W1*(FUN(X-X1*H)*BVALU(XT,BC,N,KK,ID,X-X1*H,INBV,WORK)+
|
||
|
1 FUN(X+X1*H)*BVALU(XT,BC,N,KK,ID,X+X1*H,INBV,WORK))
|
||
|
2 +W2*(FUN(X-X2*H)*BVALU(XT,BC,N,KK,ID,X-X2*H,INBV,WORK)+
|
||
|
3 FUN(X+X2*H)*BVALU(XT,BC,N,KK,ID,X+X2*H,INBV,WORK)))
|
||
|
4 +(W3*(FUN(X-X3*H)*BVALU(XT,BC,N,KK,ID,X-X3*H,INBV,WORK)+
|
||
|
5 FUN(X+X3*H)*BVALU(XT,BC,N,KK,ID,X+X3*H,INBV,WORK))
|
||
|
6 +W4*(FUN(X-X4*H)*BVALU(XT,BC,N,KK,ID,X-X4*H,INBV,WORK)+
|
||
|
7 FUN(X+X4*H)*BVALU(XT,BC,N,KK,ID,X+X4*H,INBV,WORK))))
|
||
|
C
|
||
|
C INITIALIZE
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT BSGQ8
|
||
|
K = I1MACH(11)
|
||
|
ANIB = R1MACH(5)*K/0.30102000E0
|
||
|
NBITS = INT(ANIB)
|
||
|
NLMX = (NBITS*5)/8
|
||
|
ANS = 0.0E0
|
||
|
IERR = 1
|
||
|
CE = 0.0E0
|
||
|
IF (A.EQ.B) GO TO 140
|
||
|
LMX = NLMX
|
||
|
LMN = NLMN
|
||
|
IF (B.EQ.0.0E0) GO TO 10
|
||
|
IF (SIGN(1.0E0,B)*A.LE.0.0E0) GO TO 10
|
||
|
C = ABS(1.0E0-A/B)
|
||
|
IF (C.GT.0.1E0) GO TO 10
|
||
|
IF (C.LE.0.0E0) GO TO 140
|
||
|
ANIB = 0.5E0 - LOG(C)/0.69314718E0
|
||
|
NIB = INT(ANIB)
|
||
|
LMX = MIN(NLMX,NBITS-NIB-7)
|
||
|
IF (LMX.LT.1) GO TO 130
|
||
|
LMN = MIN(LMN,LMX)
|
||
|
10 TOL = MAX(ABS(ERR),2.0E0**(5-NBITS))/2.0E0
|
||
|
IF (ERR.EQ.0.0E0) TOL = SQRT(R1MACH(4))
|
||
|
EPS = TOL
|
||
|
HH(1) = (B-A)/4.0E0
|
||
|
AA(1) = A
|
||
|
LR(1) = 1
|
||
|
L = 1
|
||
|
EST = G8(AA(L)+2.0E0*HH(L),2.0E0*HH(L))
|
||
|
K = 8
|
||
|
AREA = ABS(EST)
|
||
|
EF = 0.5E0
|
||
|
MXL = 0
|
||
|
C
|
||
|
C COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.
|
||
|
C
|
||
|
20 GL = G8(AA(L)+HH(L),HH(L))
|
||
|
GR(L) = G8(AA(L)+3.0E0*HH(L),HH(L))
|
||
|
K = K + 16
|
||
|
AREA = AREA + (ABS(GL)+ABS(GR(L))-ABS(EST))
|
||
|
GLR = GL + GR(L)
|
||
|
EE = ABS(EST-GLR)*EF
|
||
|
AE = MAX(EPS*AREA,TOL*ABS(GLR))
|
||
|
IF (EE-AE) 40, 40, 50
|
||
|
30 MXL = 1
|
||
|
40 CE = CE + (EST-GLR)
|
||
|
IF (LR(L)) 60, 60, 80
|
||
|
C
|
||
|
C CONSIDER THE LEFT HALF OF THIS LEVEL
|
||
|
C
|
||
|
50 IF (K.GT.KMX) LMX = KML
|
||
|
IF (L.GE.LMX) GO TO 30
|
||
|
L = L + 1
|
||
|
EPS = EPS*0.5E0
|
||
|
EF = EF/SQ2
|
||
|
HH(L) = HH(L-1)*0.5E0
|
||
|
LR(L) = -1
|
||
|
AA(L) = AA(L-1)
|
||
|
EST = GL
|
||
|
GO TO 20
|
||
|
C
|
||
|
C PROCEED TO RIGHT HALF AT THIS LEVEL
|
||
|
C
|
||
|
60 VL(L) = GLR
|
||
|
70 EST = GR(L-1)
|
||
|
LR(L) = 1
|
||
|
AA(L) = AA(L) + 4.0E0*HH(L)
|
||
|
GO TO 20
|
||
|
C
|
||
|
C RETURN ONE LEVEL
|
||
|
C
|
||
|
80 VR = GLR
|
||
|
90 IF (L.LE.1) GO TO 120
|
||
|
L = L - 1
|
||
|
EPS = EPS*2.0E0
|
||
|
EF = EF*SQ2
|
||
|
IF (LR(L)) 100, 100, 110
|
||
|
100 VL(L) = VL(L+1) + VR
|
||
|
GO TO 70
|
||
|
110 VR = VL(L+1) + VR
|
||
|
GO TO 90
|
||
|
C
|
||
|
C EXIT
|
||
|
C
|
||
|
120 ANS = VR
|
||
|
IF ((MXL.EQ.0) .OR. (ABS(CE).LE.2.0E0*TOL*AREA)) GO TO 140
|
||
|
IERR = 2
|
||
|
CALL XERMSG ('SLATEC', 'BSGQ8',
|
||
|
+ 'ANS IS PROBABLY INSUFFICIENTLY ACCURATE.', 3, 1)
|
||
|
GO TO 140
|
||
|
130 IERR = -1
|
||
|
CALL XERMSG ('SLATEC', 'BSGQ8',
|
||
|
+ 'A AND B ARE TOO NEARLY EQUAL TO ALLOW NORMAL INTEGRATION. ' //
|
||
|
+ ' ANS IS SET TO ZERO AND IERR TO -1.', 1, -1)
|
||
|
140 CONTINUE
|
||
|
IF (ERR.LT.0.0E0) ERR = CE
|
||
|
RETURN
|
||
|
END
|