mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
352 lines
12 KiB
FortranFixed
352 lines
12 KiB
FortranFixed
|
*DECK BSKIN
|
||
|
SUBROUTINE BSKIN (X, N, KODE, M, Y, NZ, IERR)
|
||
|
C***BEGIN PROLOGUE BSKIN
|
||
|
C***PURPOSE Compute repeated integrals of the K-zero Bessel function.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY C10F
|
||
|
C***TYPE SINGLE PRECISION (BSKIN-S, DBSKIN-D)
|
||
|
C***KEYWORDS BICKLEY FUNCTIONS, EXPONENTIAL INTEGRAL,
|
||
|
C INTEGRALS OF BESSEL FUNCTIONS, K-ZERO BESSEL FUNCTION
|
||
|
C***AUTHOR Amos, D. E., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C The following definitions are used in BSKIN:
|
||
|
C
|
||
|
C Definition 1
|
||
|
C KI(0,X) = K-zero Bessel function.
|
||
|
C
|
||
|
C Definition 2
|
||
|
C KI(N,X) = Bickley Function
|
||
|
C = integral from X to infinity of KI(N-1,t)dt
|
||
|
C for X .ge. 0 and N = 1,2,...
|
||
|
C ____________________________________________________________________
|
||
|
C BSKIN computes sequences of Bickley functions (repeated integrals
|
||
|
C of the K0 Bessel function); i.e. for fixed X and N and K=1,...,
|
||
|
C BSKIN computes the M-member sequence
|
||
|
C
|
||
|
C Y(K) = KI(N+K-1,X) for KODE=1
|
||
|
C or
|
||
|
C Y(K) = EXP(X)*KI(N+K-1,X) for KODE=2,
|
||
|
C
|
||
|
C for N.ge.0 and X.ge.0 (N and X cannot be zero simultaneously).
|
||
|
C
|
||
|
C INPUT
|
||
|
C X - Argument, X .ge. 0.0E0
|
||
|
C N - Order of first member of the sequence N .ge. 0
|
||
|
C KODE - Selection parameter
|
||
|
C KODE = 1 returns Y(K)= KI(N+K-1,X), K=1,M
|
||
|
C = 2 returns Y(K)=EXP(X)*KI(N+K-1,X), K=1,M
|
||
|
C M - Number of members in the sequence, M.ge.1
|
||
|
C
|
||
|
C OUTPUT
|
||
|
C Y - A vector of dimension at least M containing the
|
||
|
C sequence selected by KODE.
|
||
|
C NZ - Underflow flag
|
||
|
C NZ = 0 means computation completed
|
||
|
C = M means an exponential underflow occurred on
|
||
|
C KODE=1. Y(K)=0.0E0, K=1,...,M is returned
|
||
|
C IERR - Error flag
|
||
|
C IERR = 0, Normal return, computation completed.
|
||
|
C = 1, Input error, no computation.
|
||
|
C = 2, Error, no computation. The
|
||
|
C termination condition was not met.
|
||
|
C
|
||
|
C The nominal computational accuracy is the maximum of unit
|
||
|
C roundoff (=R1MACH(4)) and 1.0e-18 since critical constants
|
||
|
C are given to only 18 digits.
|
||
|
C
|
||
|
C DBSKIN is the double precision version of BSKIN.
|
||
|
C
|
||
|
C *Long Description:
|
||
|
C
|
||
|
C Numerical recurrence on
|
||
|
C
|
||
|
C (L-1)*KI(L,X) = X(KI(L-3,X) - KI(L-1,X)) + (L-2)*KI(L-2,X)
|
||
|
C
|
||
|
C is stable where recurrence is carried forward or backward
|
||
|
C away from INT(X+0.5). The power series for indices 0,1 and 2
|
||
|
C on 0.le.X.le. 2 starts a stable recurrence for indices
|
||
|
C greater than 2. If N is sufficiently large (N.gt.NLIM), the
|
||
|
C uniform asymptotic expansion for N to INFINITY is more
|
||
|
C economical. On X.gt.2 the recursion is started by evaluating
|
||
|
C the uniform expansion for the three members whose indices are
|
||
|
C closest to INT(X+0.5) within the set N,...,N+M-1. Forward
|
||
|
C recurrence, backward recurrence or both, complete the
|
||
|
C sequence depending on the relation of INT(X+0.5) to the
|
||
|
C indices N,...,N+M-1.
|
||
|
C
|
||
|
C***REFERENCES D. E. Amos, Uniform asymptotic expansions for
|
||
|
C exponential integrals E(N,X) and Bickley functions
|
||
|
C KI(N,X), ACM Transactions on Mathematical Software,
|
||
|
C 1983.
|
||
|
C D. E. Amos, A portable Fortran subroutine for the
|
||
|
C Bickley functions KI(N,X), Algorithm 609, ACM
|
||
|
C Transactions on Mathematical Software, 1983.
|
||
|
C***ROUTINES CALLED BKIAS, BKISR, EXINT, GAMRN, I1MACH, R1MACH
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 820601 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 891009 Removed unreferenced statement label. (WRB)
|
||
|
C 891009 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE BSKIN
|
||
|
INTEGER I, ICASE, IERR, IL, I1M, K, KK, KODE, KTRMS, M,
|
||
|
* M3, N, NE, NFLG, NL, NLIM, NN, NP, NS, NT, NZ
|
||
|
INTEGER I1MACH
|
||
|
REAL A, ENLIM, EXI, FN, GR, H, HN, HRTPI, SS, TOL, T1, T2, W, X,
|
||
|
* XLIM, XNLIM, XP, Y, YS, YSS
|
||
|
REAL GAMRN, R1MACH
|
||
|
DIMENSION EXI(102), A(50), YS(3), YSS(3), H(31), Y(*)
|
||
|
SAVE A, HRTPI
|
||
|
C-----------------------------------------------------------------------
|
||
|
C COEFFICIENTS IN SERIES OF EXPONENTIAL INTEGRALS
|
||
|
C-----------------------------------------------------------------------
|
||
|
DATA A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10),
|
||
|
* A(11), A(12), A(13), A(14), A(15), A(16), A(17), A(18), A(19),
|
||
|
* A(20), A(21), A(22), A(23), A(24) /1.00000000000000000E+00,
|
||
|
* 5.00000000000000000E-01,3.75000000000000000E-01,
|
||
|
* 3.12500000000000000E-01,2.73437500000000000E-01,
|
||
|
* 2.46093750000000000E-01,2.25585937500000000E-01,
|
||
|
* 2.09472656250000000E-01,1.96380615234375000E-01,
|
||
|
* 1.85470581054687500E-01,1.76197052001953125E-01,
|
||
|
* 1.68188095092773438E-01,1.61180257797241211E-01,
|
||
|
* 1.54981017112731934E-01,1.49445980787277222E-01,
|
||
|
* 1.44464448094367981E-01,1.39949934091418982E-01,
|
||
|
* 1.35833759559318423E-01,1.32060599571559578E-01,
|
||
|
* 1.28585320635465905E-01,1.25370687619579257E-01,
|
||
|
* 1.22385671247684513E-01,1.19604178719328047E-01,
|
||
|
* 1.17004087877603524E-01/
|
||
|
DATA A(25), A(26), A(27), A(28), A(29), A(30), A(31), A(32),
|
||
|
* A(33), A(34), A(35), A(36), A(37), A(38), A(39), A(40), A(41),
|
||
|
* A(42), A(43), A(44), A(45), A(46), A(47), A(48)
|
||
|
* /1.14566502713486784E-01,1.12275172659217048E-01,
|
||
|
* 1.10116034723462874E-01,1.08076848895250599E-01,
|
||
|
* 1.06146905164978267E-01,1.04316786110409676E-01,
|
||
|
* 1.02578173008569515E-01,1.00923686347140974E-01,
|
||
|
* 9.93467537479668965E-02,9.78414999033007314E-02,
|
||
|
* 9.64026543164874854E-02,9.50254735405376642E-02,
|
||
|
* 9.37056752969190855E-02,9.24393823875012600E-02,
|
||
|
* 9.12230747245078224E-02,9.00535481254756708E-02,
|
||
|
* 8.89278787739072249E-02,8.78433924473961612E-02,
|
||
|
* 8.67976377754033498E-02,8.57883629175498224E-02,
|
||
|
* 8.48134951571231199E-02,8.38711229887106408E-02,
|
||
|
* 8.29594803475290034E-02,8.20769326842574183E-02/
|
||
|
DATA A(49), A(50) /8.12219646354630702E-02,8.03931690779583449E-02
|
||
|
* /
|
||
|
C-----------------------------------------------------------------------
|
||
|
C SQRT(PI)/2
|
||
|
C-----------------------------------------------------------------------
|
||
|
DATA HRTPI /8.86226925452758014E-01/
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT BSKIN
|
||
|
IERR = 0
|
||
|
NZ=0
|
||
|
IF (X.LT.0.0E0) IERR=1
|
||
|
IF (N.LT.0) IERR=1
|
||
|
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
||
|
IF (M.LT.1) IERR=1
|
||
|
IF (X.EQ.0.0E0 .AND. N.EQ.0) IERR=1
|
||
|
IF (IERR.NE.0) RETURN
|
||
|
IF (X.EQ.0.0E0) GO TO 300
|
||
|
I1M = -I1MACH(12)
|
||
|
T1 = 2.3026E0*R1MACH(5)*I1M
|
||
|
XLIM = T1 - 3.228086E0
|
||
|
T2 = T1 + N + M - 1
|
||
|
IF (T2.GT.1000.0E0) XLIM = T1 - 0.5E0*(LOG(T2)-0.451583E0)
|
||
|
IF (X.GT.XLIM .AND. KODE.EQ.1) GO TO 320
|
||
|
TOL = MAX(R1MACH(4),1.0E-18)
|
||
|
I1M = I1MACH(11)
|
||
|
C-----------------------------------------------------------------------
|
||
|
C LN(NLIM) = 0.125*LN(EPS), NLIM = 2*KTRMS+N
|
||
|
C-----------------------------------------------------------------------
|
||
|
XNLIM = 0.287823E0*(I1M-1)*R1MACH(5)
|
||
|
ENLIM = EXP(XNLIM)
|
||
|
NLIM = INT(ENLIM) + 2
|
||
|
NLIM = MIN(100,NLIM)
|
||
|
NLIM = MAX(20,NLIM)
|
||
|
M3 = MIN(M,3)
|
||
|
NL = N + M - 1
|
||
|
IF (X.GT.2.0E0) GO TO 130
|
||
|
IF (N.GT.NLIM) GO TO 280
|
||
|
C-----------------------------------------------------------------------
|
||
|
C COMPUTATION BY SERIES FOR 0.LE.X.LE.2
|
||
|
C-----------------------------------------------------------------------
|
||
|
NFLG = 0
|
||
|
NN = N
|
||
|
IF (NL.LE.2) GO TO 60
|
||
|
M3 = 3
|
||
|
NN = 0
|
||
|
NFLG = 1
|
||
|
60 CONTINUE
|
||
|
XP = 1.0E0
|
||
|
IF (KODE.EQ.2) XP = EXP(X)
|
||
|
DO 80 I=1,M3
|
||
|
CALL BKISR(X, NN, W, IERR)
|
||
|
IF(IERR.NE.0) RETURN
|
||
|
W = W*XP
|
||
|
IF (NN.LT.N) GO TO 70
|
||
|
KK = NN - N + 1
|
||
|
Y(KK) = W
|
||
|
70 CONTINUE
|
||
|
YS(I) = W
|
||
|
NN = NN + 1
|
||
|
80 CONTINUE
|
||
|
IF (NFLG.EQ.0) RETURN
|
||
|
NS = NN
|
||
|
XP = 1.0E0
|
||
|
90 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C FORWARD RECURSION SCALED BY EXP(X) ON ICASE=0,1,2
|
||
|
C-----------------------------------------------------------------------
|
||
|
FN = NS - 1
|
||
|
IL = NL - NS + 1
|
||
|
IF (IL.LE.0) RETURN
|
||
|
DO 110 I=1,IL
|
||
|
T1 = YS(2)
|
||
|
T2 = YS(3)
|
||
|
YS(3) = (X*(YS(1)-YS(3))+(FN-1.0E0)*YS(2))/FN
|
||
|
YS(2) = T2
|
||
|
YS(1) = T1
|
||
|
FN = FN + 1.0E0
|
||
|
IF (NS.LT.N) GO TO 100
|
||
|
KK = NS - N + 1
|
||
|
Y(KK) = YS(3)*XP
|
||
|
100 CONTINUE
|
||
|
NS = NS + 1
|
||
|
110 CONTINUE
|
||
|
RETURN
|
||
|
C-----------------------------------------------------------------------
|
||
|
C COMPUTATION BY ASYMPTOTIC EXPANSION FOR X.GT.2
|
||
|
C-----------------------------------------------------------------------
|
||
|
130 CONTINUE
|
||
|
W = X + 0.5E0
|
||
|
NT = INT(W)
|
||
|
IF (NL.GT.NT) GO TO 270
|
||
|
C-----------------------------------------------------------------------
|
||
|
C CASE NL.LE.NT, ICASE=0
|
||
|
C-----------------------------------------------------------------------
|
||
|
ICASE = 0
|
||
|
NN = NL
|
||
|
NFLG = MIN(M-M3,1)
|
||
|
140 CONTINUE
|
||
|
KK = (NLIM-NN)/2
|
||
|
KTRMS = MAX(0,KK)
|
||
|
NS = NN + 1
|
||
|
NP = NN - M3 + 1
|
||
|
XP = 1.0E0
|
||
|
IF (KODE.EQ.1) XP = EXP(-X)
|
||
|
DO 150 I=1,M3
|
||
|
KK = I
|
||
|
CALL BKIAS(X, NP, KTRMS, A, W, KK, NE, GR, H, IERR)
|
||
|
IF(IERR.NE.0) RETURN
|
||
|
YS(I) = W
|
||
|
NP = NP + 1
|
||
|
150 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C SUM SERIES OF EXPONENTIAL INTEGRALS BACKWARD
|
||
|
C-----------------------------------------------------------------------
|
||
|
IF (KTRMS.EQ.0) GO TO 160
|
||
|
NE = KTRMS + KTRMS + 1
|
||
|
NP = NN - M3 + 2
|
||
|
CALL EXINT(X, NP, 2, NE, TOL, EXI, NZ, IERR)
|
||
|
IF(NZ.NE.0) GO TO 320
|
||
|
IF(IERR.EQ.2) RETURN
|
||
|
160 CONTINUE
|
||
|
DO 190 I=1,M3
|
||
|
SS = 0.0E0
|
||
|
IF (KTRMS.EQ.0) GO TO 180
|
||
|
KK = I + KTRMS + KTRMS - 2
|
||
|
IL = KTRMS
|
||
|
DO 170 K=1,KTRMS
|
||
|
SS = SS + A(IL)*EXI(KK)
|
||
|
KK = KK - 2
|
||
|
IL = IL - 1
|
||
|
170 CONTINUE
|
||
|
180 CONTINUE
|
||
|
YS(I) = YS(I) + SS
|
||
|
190 CONTINUE
|
||
|
IF (ICASE.EQ.1) GO TO 200
|
||
|
IF (NFLG.NE.0) GO TO 220
|
||
|
200 CONTINUE
|
||
|
DO 210 I=1,M3
|
||
|
Y(I) = YS(I)*XP
|
||
|
210 CONTINUE
|
||
|
IF (ICASE.EQ.1 .AND. NFLG.EQ.1) GO TO 90
|
||
|
RETURN
|
||
|
220 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C BACKWARD RECURSION SCALED BY EXP(X) ICASE=0,2
|
||
|
C-----------------------------------------------------------------------
|
||
|
KK = NN - N + 1
|
||
|
K = M3
|
||
|
DO 230 I=1,M3
|
||
|
Y(KK) = YS(K)*XP
|
||
|
YSS(I) = YS(I)
|
||
|
KK = KK - 1
|
||
|
K = K - 1
|
||
|
230 CONTINUE
|
||
|
IL = KK
|
||
|
IF (IL.LE.0) GO TO 250
|
||
|
FN = NN - 3
|
||
|
DO 240 I=1,IL
|
||
|
T1 = YS(2)
|
||
|
T2 = YS(1)
|
||
|
YS(1) = YS(2) + ((FN+2.0E0)*YS(3)-(FN+1.0E0)*YS(1))/X
|
||
|
YS(2) = T2
|
||
|
YS(3) = T1
|
||
|
Y(KK) = YS(1)*XP
|
||
|
KK = KK - 1
|
||
|
FN = FN - 1.0E0
|
||
|
240 CONTINUE
|
||
|
250 CONTINUE
|
||
|
IF (ICASE.NE.2) RETURN
|
||
|
DO 260 I=1,M3
|
||
|
YS(I) = YSS(I)
|
||
|
260 CONTINUE
|
||
|
GO TO 90
|
||
|
270 CONTINUE
|
||
|
IF (N.LT.NT) GO TO 290
|
||
|
C-----------------------------------------------------------------------
|
||
|
C ICASE=1, NT.LE.N.LE.NL WITH FORWARD RECURSION
|
||
|
C-----------------------------------------------------------------------
|
||
|
280 CONTINUE
|
||
|
NN = N + M3 - 1
|
||
|
NFLG = MIN(M-M3,1)
|
||
|
ICASE = 1
|
||
|
GO TO 140
|
||
|
C-----------------------------------------------------------------------
|
||
|
C ICASE=2, N.LT.NT.LT.NL WITH BOTH FORWARD AND BACKWARD RECURSION
|
||
|
C-----------------------------------------------------------------------
|
||
|
290 CONTINUE
|
||
|
NN = NT + 1
|
||
|
NFLG = MIN(M-M3,1)
|
||
|
ICASE = 2
|
||
|
GO TO 140
|
||
|
C-----------------------------------------------------------------------
|
||
|
C X=0 CASE
|
||
|
C-----------------------------------------------------------------------
|
||
|
300 CONTINUE
|
||
|
FN = N
|
||
|
HN = 0.5E0*FN
|
||
|
GR = GAMRN(HN)
|
||
|
Y(1) = HRTPI*GR
|
||
|
IF (M.EQ.1) RETURN
|
||
|
Y(2) = HRTPI/(HN*GR)
|
||
|
IF (M.EQ.2) RETURN
|
||
|
DO 310 K=3,M
|
||
|
Y(K) = FN*Y(K-2)/(FN+1.0E0)
|
||
|
FN = FN + 1.0E0
|
||
|
310 CONTINUE
|
||
|
RETURN
|
||
|
C-----------------------------------------------------------------------
|
||
|
C UNDERFLOW ON KODE=1, X.GT.XLIM
|
||
|
C-----------------------------------------------------------------------
|
||
|
320 CONTINUE
|
||
|
NZ=M
|
||
|
DO 330 I=1,M
|
||
|
Y(I) = 0.0E0
|
||
|
330 CONTINUE
|
||
|
RETURN
|
||
|
END
|