OpenLibm/slatec/bspdr.f

107 lines
3.4 KiB
FortranFixed
Raw Normal View History

*DECK BSPDR
SUBROUTINE BSPDR (T, A, N, K, NDERIV, AD)
C***BEGIN PROLOGUE BSPDR
C***PURPOSE Use the B-representation to construct a divided difference
C table preparatory to a (right) derivative calculation.
C***LIBRARY SLATEC
C***CATEGORY E3
C***TYPE SINGLE PRECISION (BSPDR-S, DBSPDR-D)
C***KEYWORDS B-SPLINE, DATA FITTING, DIFFERENTIATION OF SPLINES,
C INTERPOLATION
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C Written by Carl de Boor and modified by D. E. Amos
C
C Abstract
C BSPDR is the BSPLDR routine of the reference.
C
C BSPDR uses the B-representation (T,A,N,K) to construct a
C divided difference table ADIF preparatory to a (right)
C derivative calculation in BSPEV. The lower triangular matrix
C ADIF is stored in vector AD by columns. The arrays are
C related by
C
C ADIF(I,J) = AD(I-J+1 + (2*N-J+2)*(J-1)/2)
C
C I = J,N , J = 1,NDERIV .
C
C Description of Arguments
C Input
C T - knot vector of length N+K
C A - B-spline coefficient vector of length N
C N - number of B-spline coefficients
C N = sum of knot multiplicities-K
C K - order of the spline, K .GE. 1
C NDERIV - number of derivatives, 1 .LE. NDERIV .LE. K.
C NDERIV=1 gives the zero-th derivative = function
C value
C
C Output
C AD - table of differences in a vector of length
C (2*N-NDERIV+1)*NDERIV/2 for input to BSPEV
C
C Error Conditions
C Improper input is a fatal error
C
C***REFERENCES Carl de Boor, Package for calculating with B-splines,
C SIAM Journal on Numerical Analysis 14, 3 (June 1977),
C pp. 441-472.
C***ROUTINES CALLED XERMSG
C***REVISION HISTORY (YYMMDD)
C 800901 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE BSPDR
C
INTEGER I, ID, II, IPKMID, JJ, JM, K, KMID, N, NDERIV
REAL A, AD, DIFF, FKMID, T
C DIMENSION T(N+K), AD((2*N-NDERIV+1)*NDERIV/2)
DIMENSION T(*), A(*), AD(*)
C***FIRST EXECUTABLE STATEMENT BSPDR
IF(K.LT.1) GO TO 100
IF(N.LT.K) GO TO 105
IF(NDERIV.LT.1 .OR. NDERIV.GT.K) GO TO 110
DO 10 I=1,N
AD(I) = A(I)
10 CONTINUE
IF (NDERIV.EQ.1) RETURN
KMID = K
JJ = N
JM = 0
DO 30 ID=2,NDERIV
KMID = KMID - 1
FKMID = KMID
II = 1
DO 20 I=ID,N
IPKMID = I + KMID
DIFF = T(IPKMID) - T(I)
IF (DIFF.NE.0.0E0) AD(II+JJ) = (AD(II+JM+1)-AD(II+JM))/
1 DIFF*FKMID
II = II + 1
20 CONTINUE
JM = JJ
JJ = JJ + N - ID + 1
30 CONTINUE
RETURN
C
C
100 CONTINUE
CALL XERMSG ('SLATEC', 'BSPDR', 'K DOES NOT SATISFY K.GE.1', 2,
+ 1)
RETURN
105 CONTINUE
CALL XERMSG ('SLATEC', 'BSPDR', 'N DOES NOT SATISFY N.GE.K', 2,
+ 1)
RETURN
110 CONTINUE
CALL XERMSG ('SLATEC', 'BSPDR',
+ 'NDERIV DOES NOT SATISFY 1.LE.NDERIV.LE.K', 2, 1)
RETURN
END