OpenLibm/slatec/bsqad.f

145 lines
4.7 KiB
FortranFixed
Raw Normal View History

*DECK BSQAD
SUBROUTINE BSQAD (T, BCOEF, N, K, X1, X2, BQUAD, WORK)
C***BEGIN PROLOGUE BSQAD
C***PURPOSE Compute the integral of a K-th order B-spline using the
C B-representation.
C***LIBRARY SLATEC
C***CATEGORY H2A2A1, E3, K6
C***TYPE SINGLE PRECISION (BSQAD-S, DBSQAD-D)
C***KEYWORDS INTEGRAL OF B-SPLINES, QUADRATURE
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C Abstract
C BSQAD computes the integral on (X1,X2) of a K-th order
C B-spline using the B-representation (T,BCOEF,N,K). Orders
C K as high as 20 are permitted by applying a 2, 6, or 10
C point Gauss formula on subintervals of (X1,X2) which are
C formed by included (distinct) knots.
C
C If orders K greater than 20 are needed, use BFQAD with
C F(X) = 1.
C
C Description of Arguments
C Input
C T - knot array of length N+K
C BCOEF - B-spline coefficient array of length N
C N - length of coefficient array
C K - order of B-spline, 1 .LE. K .LE. 20
C X1,X2 - end points of quadrature interval in
C T(K) .LE. X .LE. T(N+1)
C
C Output
C BQUAD - integral of the B-spline over (X1,X2)
C WORK - work vector of length 3*K
C
C Error Conditions
C Improper input is a fatal error
C
C***REFERENCES D. E. Amos, Quadrature subroutines for splines and
C B-splines, Report SAND79-1825, Sandia Laboratories,
C December 1979.
C***ROUTINES CALLED BVALU, INTRV, XERMSG
C***REVISION HISTORY (YYMMDD)
C 800901 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE BSQAD
C
INTEGER I,IL1,IL2,ILO,INBV, JF,K,LEFT,M,MF,MFLAG,N, NPK, NP1
REAL A, AA, B, BB, BCOEF, BMA, BPA, BQUAD, C1, GPTS, GWTS, GX, Q,
1 SUM, T, TA, TB, WORK, X1, X2, Y1, Y2
REAL BVALU
DIMENSION T(*), BCOEF(*), GPTS(9), GWTS(9), SUM(5), WORK(*)
C
SAVE GPTS, GWTS
DATA GPTS(1), GPTS(2), GPTS(3), GPTS(4), GPTS(5), GPTS(6),
1 GPTS(7), GPTS(8), GPTS(9)/
2 5.77350269189625764E-01, 2.38619186083196909E-01,
3 6.61209386466264514E-01, 9.32469514203152028E-01,
4 1.48874338981631211E-01, 4.33395394129247191E-01,
5 6.79409568299024406E-01, 8.65063366688984511E-01,
6 9.73906528517171720E-01/
DATA GWTS(1), GWTS(2), GWTS(3), GWTS(4), GWTS(5), GWTS(6),
1 GWTS(7), GWTS(8), GWTS(9)/
2 1.00000000000000000E+00, 4.67913934572691047E-01,
3 3.60761573048138608E-01, 1.71324492379170345E-01,
4 2.95524224714752870E-01, 2.69266719309996355E-01,
5 2.19086362515982044E-01, 1.49451349150580593E-01,
6 6.66713443086881376E-02/
C
C***FIRST EXECUTABLE STATEMENT BSQAD
BQUAD = 0.0E0
IF(K.LT.1 .OR. K.GT.20) GO TO 65
IF(N.LT.K) GO TO 70
AA = MIN(X1,X2)
BB = MAX(X1,X2)
IF (AA.LT.T(K)) GO TO 60
NP1 = N + 1
IF (BB.GT.T(NP1)) GO TO 60
IF (AA.EQ.BB) RETURN
NPK = N + K
C SELECTION OF 2, 6, OR 10 POINT GAUSS FORMULA
JF = 0
MF = 1
IF (K.LE.4) GO TO 10
JF = 1
MF = 3
IF (K.LE.12) GO TO 10
JF = 4
MF = 5
10 CONTINUE
C
DO 20 I=1,MF
SUM(I) = 0.0E0
20 CONTINUE
ILO = 1
INBV = 1
CALL INTRV(T, NPK, AA, ILO, IL1, MFLAG)
CALL INTRV(T, NPK, BB, ILO, IL2, MFLAG)
IF (IL2.GE.NP1) IL2 = N
DO 40 LEFT=IL1,IL2
TA = T(LEFT)
TB = T(LEFT+1)
IF (TA.EQ.TB) GO TO 40
A = MAX(AA,TA)
B = MIN(BB,TB)
BMA = 0.5E0*(B-A)
BPA = 0.5E0*(B+A)
DO 30 M=1,MF
C1 = BMA*GPTS(JF+M)
GX = -C1 + BPA
Y2 = BVALU(T,BCOEF,N,K,0,GX,INBV,WORK)
GX = C1 + BPA
Y1 = BVALU(T,BCOEF,N,K,0,GX,INBV,WORK)
SUM(M) = SUM(M) + (Y1+Y2)*BMA
30 CONTINUE
40 CONTINUE
Q = 0.0E0
DO 50 M=1,MF
Q = Q + GWTS(JF+M)*SUM(M)
50 CONTINUE
IF (X1.GT.X2) Q = -Q
BQUAD = Q
RETURN
C
C
60 CONTINUE
CALL XERMSG ('SLATEC', 'BSQAD',
+ 'X1 OR X2 OR BOTH DO NOT SATISFY T(K).LE.X.LE.T(N+1)', 2, 1)
RETURN
65 CONTINUE
CALL XERMSG ('SLATEC', 'BSQAD', 'K DOES NOT SATISFY 1.LE.K.LE.20'
+ , 2, 1)
RETURN
70 CONTINUE
CALL XERMSG ('SLATEC', 'BSQAD', 'N DOES NOT SATISFY N.GE.K', 2,
+ 1)
RETURN
END