mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
166 lines
5.6 KiB
FortranFixed
166 lines
5.6 KiB
FortranFixed
|
*DECK BVALU
|
||
|
FUNCTION BVALU (T, A, N, K, IDERIV, X, INBV, WORK)
|
||
|
C***BEGIN PROLOGUE BVALU
|
||
|
C***PURPOSE Evaluate the B-representation of a B-spline at X for the
|
||
|
C function value or any of its derivatives.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY E3, K6
|
||
|
C***TYPE SINGLE PRECISION (BVALU-S, DBVALU-D)
|
||
|
C***KEYWORDS DIFFERENTIATION OF B-SPLINE, EVALUATION OF B-SPLINE
|
||
|
C***AUTHOR Amos, D. E., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Written by Carl de Boor and modified by D. E. Amos
|
||
|
C
|
||
|
C Abstract
|
||
|
C BVALU is the BVALUE function of the reference.
|
||
|
C
|
||
|
C BVALU evaluates the B-representation (T,A,N,K) of a B-spline
|
||
|
C at X for the function value on IDERIV = 0 or any of its
|
||
|
C derivatives on IDERIV = 1,2,...,K-1. Right limiting values
|
||
|
C (right derivatives) are returned except at the right end
|
||
|
C point X=T(N+1) where left limiting values are computed. The
|
||
|
C spline is defined on T(K) .LE. X .LE. T(N+1). BVALU returns
|
||
|
C a fatal error message when X is outside of this interval.
|
||
|
C
|
||
|
C To compute left derivatives or left limiting values at a
|
||
|
C knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.
|
||
|
C
|
||
|
C BVALU calls INTRV
|
||
|
C
|
||
|
C Description of Arguments
|
||
|
C Input
|
||
|
C T - knot vector of length N+K
|
||
|
C A - B-spline coefficient vector of length N
|
||
|
C N - number of B-spline coefficients
|
||
|
C N = sum of knot multiplicities-K
|
||
|
C K - order of the B-spline, K .GE. 1
|
||
|
C IDERIV - order of the derivative, 0 .LE. IDERIV .LE. K-1
|
||
|
C IDERIV=0 returns the B-spline value
|
||
|
C X - argument, T(K) .LE. X .LE. T(N+1)
|
||
|
C INBV - an initialization parameter which must be set
|
||
|
C to 1 the first time BVALU is called.
|
||
|
C
|
||
|
C Output
|
||
|
C INBV - INBV contains information for efficient process-
|
||
|
C ing after the initial call and INBV must not
|
||
|
C be changed by the user. Distinct splines require
|
||
|
C distinct INBV parameters.
|
||
|
C WORK - work vector of length 3*K.
|
||
|
C BVALU - value of the IDERIV-th derivative at X
|
||
|
C
|
||
|
C Error Conditions
|
||
|
C An improper input is a fatal error
|
||
|
C
|
||
|
C***REFERENCES Carl de Boor, Package for calculating with B-splines,
|
||
|
C SIAM Journal on Numerical Analysis 14, 3 (June 1977),
|
||
|
C pp. 441-472.
|
||
|
C***ROUTINES CALLED INTRV, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800901 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890531 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE BVALU
|
||
|
C
|
||
|
INTEGER I,IDERIV,IDERP1,IHI,IHMKMJ,ILO,IMK,IMKPJ, INBV, IPJ,
|
||
|
1 IP1, IP1MJ, J, JJ, J1, J2, K, KMIDER, KMJ, KM1, KPK, MFLAG, N
|
||
|
REAL A, FKMJ, T, WORK, X
|
||
|
C DIMENSION T(N+K), WORK(3*K)
|
||
|
DIMENSION T(*), A(*), WORK(*)
|
||
|
C***FIRST EXECUTABLE STATEMENT BVALU
|
||
|
BVALU = 0.0E0
|
||
|
IF(K.LT.1) GO TO 102
|
||
|
IF(N.LT.K) GO TO 101
|
||
|
IF(IDERIV.LT.0 .OR. IDERIV.GE.K) GO TO 110
|
||
|
KMIDER = K - IDERIV
|
||
|
C
|
||
|
C *** FIND *I* IN (K,N) SUCH THAT T(I) .LE. X .LT. T(I+1)
|
||
|
C (OR, .LE. T(I+1) IF T(I) .LT. T(I+1) = T(N+1)).
|
||
|
KM1 = K - 1
|
||
|
CALL INTRV(T, N+1, X, INBV, I, MFLAG)
|
||
|
IF (X.LT.T(K)) GO TO 120
|
||
|
IF (MFLAG.EQ.0) GO TO 20
|
||
|
IF (X.GT.T(I)) GO TO 130
|
||
|
10 IF (I.EQ.K) GO TO 140
|
||
|
I = I - 1
|
||
|
IF (X.EQ.T(I)) GO TO 10
|
||
|
C
|
||
|
C *** DIFFERENCE THE COEFFICIENTS *IDERIV* TIMES
|
||
|
C WORK(I) = AJ(I), WORK(K+I) = DP(I), WORK(K+K+I) = DM(I), I=1.K
|
||
|
C
|
||
|
20 IMK = I - K
|
||
|
DO 30 J=1,K
|
||
|
IMKPJ = IMK + J
|
||
|
WORK(J) = A(IMKPJ)
|
||
|
30 CONTINUE
|
||
|
IF (IDERIV.EQ.0) GO TO 60
|
||
|
DO 50 J=1,IDERIV
|
||
|
KMJ = K - J
|
||
|
FKMJ = KMJ
|
||
|
DO 40 JJ=1,KMJ
|
||
|
IHI = I + JJ
|
||
|
IHMKMJ = IHI - KMJ
|
||
|
WORK(JJ) = (WORK(JJ+1)-WORK(JJ))/(T(IHI)-T(IHMKMJ))*FKMJ
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
C
|
||
|
C *** COMPUTE VALUE AT *X* IN (T(I),(T(I+1)) OF IDERIV-TH DERIVATIVE,
|
||
|
C GIVEN ITS RELEVANT B-SPLINE COEFF. IN AJ(1),...,AJ(K-IDERIV).
|
||
|
60 IF (IDERIV.EQ.KM1) GO TO 100
|
||
|
IP1 = I + 1
|
||
|
KPK = K + K
|
||
|
J1 = K + 1
|
||
|
J2 = KPK + 1
|
||
|
DO 70 J=1,KMIDER
|
||
|
IPJ = I + J
|
||
|
WORK(J1) = T(IPJ) - X
|
||
|
IP1MJ = IP1 - J
|
||
|
WORK(J2) = X - T(IP1MJ)
|
||
|
J1 = J1 + 1
|
||
|
J2 = J2 + 1
|
||
|
70 CONTINUE
|
||
|
IDERP1 = IDERIV + 1
|
||
|
DO 90 J=IDERP1,KM1
|
||
|
KMJ = K - J
|
||
|
ILO = KMJ
|
||
|
DO 80 JJ=1,KMJ
|
||
|
WORK(JJ) = (WORK(JJ+1)*WORK(KPK+ILO)+WORK(JJ)
|
||
|
1 *WORK(K+JJ))/(WORK(KPK+ILO)+WORK(K+JJ))
|
||
|
ILO = ILO - 1
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
100 BVALU = WORK(1)
|
||
|
RETURN
|
||
|
C
|
||
|
C
|
||
|
101 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'BVALU', 'N DOES NOT SATISFY N.GE.K', 2,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
102 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'BVALU', 'K DOES NOT SATISFY K.GE.1', 2,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
110 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'BVALU',
|
||
|
+ 'IDERIV DOES NOT SATISFY 0.LE.IDERIV.LT.K', 2, 1)
|
||
|
RETURN
|
||
|
120 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'BVALU',
|
||
|
+ 'X IS N0T GREATER THAN OR EQUAL TO T(K)', 2, 1)
|
||
|
RETURN
|
||
|
130 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'BVALU',
|
||
|
+ 'X IS NOT LESS THAN OR EQUAL TO T(N+1)', 2, 1)
|
||
|
RETURN
|
||
|
140 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'BVALU',
|
||
|
+ 'A LEFT LIMITING VALUE CANNOT BE OBTAINED AT T(K)', 2, 1)
|
||
|
RETURN
|
||
|
END
|