mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
102 lines
3.5 KiB
FortranFixed
102 lines
3.5 KiB
FortranFixed
|
*DECK CACAI
|
||
|
SUBROUTINE CACAI (Z, FNU, KODE, MR, N, Y, NZ, RL, TOL, ELIM, ALIM)
|
||
|
C***BEGIN PROLOGUE CACAI
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to CAIRY
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE ALL (CACAI-A, ZACAI-A)
|
||
|
C***AUTHOR Amos, D. E., (SNL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C CACAI APPLIES THE ANALYTIC CONTINUATION FORMULA
|
||
|
C
|
||
|
C K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN)
|
||
|
C MP=PI*MR*CMPLX(0.0,1.0)
|
||
|
C
|
||
|
C TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT
|
||
|
C HALF Z PLANE FOR USE WITH CAIRY WHERE FNU=1/3 OR 2/3 AND N=1.
|
||
|
C CACAI IS THE SAME AS CACON WITH THE PARTS FOR LARGER ORDERS AND
|
||
|
C RECURRENCE REMOVED. A RECURSIVE CALL TO CACON CAN RESULT IF CACON
|
||
|
C IS CALLED FROM CAIRY.
|
||
|
C
|
||
|
C***SEE ALSO CAIRY
|
||
|
C***ROUTINES CALLED CASYI, CBKNU, CMLRI, CS1S2, CSERI, R1MACH
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 830501 DATE WRITTEN
|
||
|
C 910415 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C***END PROLOGUE CACAI
|
||
|
COMPLEX CSGN, CSPN, C1, C2, Y, Z, ZN, CY
|
||
|
REAL ALIM, ARG, ASCLE, AZ, CPN, DFNU, ELIM, FMR, FNU, PI, RL,
|
||
|
* SGN, SPN, TOL, YY, R1MACH
|
||
|
INTEGER INU, IUF, KODE, MR, N, NN, NW, NZ
|
||
|
DIMENSION Y(N), CY(2)
|
||
|
DATA PI / 3.14159265358979324E0 /
|
||
|
C***FIRST EXECUTABLE STATEMENT CACAI
|
||
|
NZ = 0
|
||
|
ZN = -Z
|
||
|
AZ = ABS(Z)
|
||
|
NN = N
|
||
|
DFNU = FNU + (N-1)
|
||
|
IF (AZ.LE.2.0E0) GO TO 10
|
||
|
IF (AZ*AZ*0.25E0.GT.DFNU+1.0E0) GO TO 20
|
||
|
10 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C POWER SERIES FOR THE I FUNCTION
|
||
|
C-----------------------------------------------------------------------
|
||
|
CALL CSERI(ZN, FNU, KODE, NN, Y, NW, TOL, ELIM, ALIM)
|
||
|
GO TO 40
|
||
|
20 CONTINUE
|
||
|
IF (AZ.LT.RL) GO TO 30
|
||
|
C-----------------------------------------------------------------------
|
||
|
C ASYMPTOTIC EXPANSION FOR LARGE Z FOR THE I FUNCTION
|
||
|
C-----------------------------------------------------------------------
|
||
|
CALL CASYI(ZN, FNU, KODE, NN, Y, NW, RL, TOL, ELIM, ALIM)
|
||
|
IF (NW.LT.0) GO TO 70
|
||
|
GO TO 40
|
||
|
30 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C MILLER ALGORITHM NORMALIZED BY THE SERIES FOR THE I FUNCTION
|
||
|
C-----------------------------------------------------------------------
|
||
|
CALL CMLRI(ZN, FNU, KODE, NN, Y, NW, TOL)
|
||
|
IF(NW.LT.0) GO TO 70
|
||
|
40 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION
|
||
|
C-----------------------------------------------------------------------
|
||
|
CALL CBKNU(ZN, FNU, KODE, 1, CY, NW, TOL, ELIM, ALIM)
|
||
|
IF (NW.NE.0) GO TO 70
|
||
|
FMR = MR
|
||
|
SGN = -SIGN(PI,FMR)
|
||
|
CSGN = CMPLX(0.0E0,SGN)
|
||
|
IF (KODE.EQ.1) GO TO 50
|
||
|
YY = -AIMAG(ZN)
|
||
|
CPN = COS(YY)
|
||
|
SPN = SIN(YY)
|
||
|
CSGN = CSGN*CMPLX(CPN,SPN)
|
||
|
50 CONTINUE
|
||
|
C-----------------------------------------------------------------------
|
||
|
C CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
|
||
|
C WHEN FNU IS LARGE
|
||
|
C-----------------------------------------------------------------------
|
||
|
INU = FNU
|
||
|
ARG = (FNU-INU)*SGN
|
||
|
CPN = COS(ARG)
|
||
|
SPN = SIN(ARG)
|
||
|
CSPN = CMPLX(CPN,SPN)
|
||
|
IF (MOD(INU,2).EQ.1) CSPN = -CSPN
|
||
|
C1 = CY(1)
|
||
|
C2 = Y(1)
|
||
|
IF (KODE.EQ.1) GO TO 60
|
||
|
IUF = 0
|
||
|
ASCLE = 1.0E+3*R1MACH(1)/TOL
|
||
|
CALL CS1S2(ZN, C1, C2, NW, ASCLE, ALIM, IUF)
|
||
|
NZ = NZ + NW
|
||
|
60 CONTINUE
|
||
|
Y(1) = CSPN*C1 + CSGN*C2
|
||
|
RETURN
|
||
|
70 CONTINUE
|
||
|
NZ = -1
|
||
|
IF(NW.EQ.(-2)) NZ=-2
|
||
|
RETURN
|
||
|
END
|