OpenLibm/slatec/cbrt.f

55 lines
1.6 KiB
FortranFixed
Raw Normal View History

*DECK CBRT
FUNCTION CBRT (X)
C***BEGIN PROLOGUE CBRT
C***PURPOSE Compute the cube root.
C***LIBRARY SLATEC (FNLIB)
C***CATEGORY C2
C***TYPE SINGLE PRECISION (CBRT-S, DCBRT-D, CCBRT-C)
C***KEYWORDS CUBE ROOT, ELEMENTARY FUNCTIONS, FNLIB, ROOTS
C***AUTHOR Fullerton, W., (LANL)
C***DESCRIPTION
C
C CBRT(X) calculates the cube root of X.
C
C***REFERENCES (NONE)
C***ROUTINES CALLED R1MACH, R9PAK, R9UPAK
C***REVISION HISTORY (YYMMDD)
C 770601 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C***END PROLOGUE CBRT
DIMENSION CBRT2(5)
SAVE CBRT2, NITER
DATA CBRT2(1) / 0.6299605249 4743658E0 /
DATA CBRT2(2) / 0.7937005259 8409974E0 /
DATA CBRT2(3) / 1.0E0 /
DATA CBRT2(4) / 1.2599210498 9487316E0 /
DATA CBRT2(5) / 1.5874010519 6819947E0 /
DATA NITER / 0 /
C***FIRST EXECUTABLE STATEMENT CBRT
IF (NITER.EQ.0) NITER = 1.443*LOG(-.106*LOG(0.1*R1MACH(3))) + 1.
C
CBRT = 0.0
IF (X.EQ.0.) RETURN
C
CALL R9UPAK (ABS(X), Y, N)
IXPNT = N/3
IREM = N - 3*IXPNT + 3
C
C THE APPROXIMATION BELOW IS A GENERALIZED CHEBYSHEV SERIES CONVERTED
C TO POLYNOMIAL FORM. THE APPROX IS NEARLY BEST IN THE SENSE OF
C RELATIVE ERROR WITH 4.085 DIGITS ACCURACY.
C
CBRT = .439581E0 + Y*(.928549E0 + Y*(-.512653E0 + Y*.144586E0))
C
DO 10 ITER=1,NITER
CBRTSQ = CBRT*CBRT
CBRT = CBRT + (Y-CBRT*CBRTSQ)/(3.0*CBRTSQ)
10 CONTINUE
C
CBRT = R9PAK (CBRT2(IREM)*SIGN(CBRT,X), IXPNT)
RETURN
C
END