OpenLibm/slatec/cgeev.f

188 lines
6.6 KiB
FortranFixed
Raw Normal View History

*DECK CGEEV
SUBROUTINE CGEEV (A, LDA, N, E, V, LDV, WORK, JOB, INFO)
C***BEGIN PROLOGUE CGEEV
C***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
C of a complex general matrix.
C***LIBRARY SLATEC
C***CATEGORY D4A4
C***TYPE COMPLEX (SGEEV-S, CGEEV-C)
C***KEYWORDS EIGENVALUES, EIGENVECTORS, GENERAL MATRIX
C***AUTHOR Kahaner, D. K., (NBS)
C Moler, C. B., (U. of New Mexico)
C Stewart, G. W., (U. of Maryland)
C***DESCRIPTION
C
C Abstract
C CGEEV computes the eigenvalues and, optionally,
C the eigenvectors of a general complex matrix.
C
C Call Sequence Parameters-
C (The values of parameters marked with * (star) will be changed
C by CGEEV.)
C
C A* COMPLEX(LDA,N)
C complex nonsymmetric input matrix.
C
C LDA INTEGER
C set by the user to
C the leading dimension of the complex array A.
C
C N INTEGER
C set by the user to
C the order of the matrices A and V, and
C the number of elements in E.
C
C E* COMPLEX(N)
C on return from CGEEV E contains the eigenvalues of A.
C See also INFO below.
C
C V* COMPLEX(LDV,N)
C on return from CGEEV if the user has set JOB
C = 0 V is not referenced.
C = nonzero the N eigenvectors of A are stored in the
C first N columns of V. See also INFO below.
C (If the input matrix A is nearly degenerate, V
C will be badly conditioned, i.e. have nearly
C dependent columns.)
C
C LDV INTEGER
C set by the user to
C the leading dimension of the array V if JOB is also
C set nonzero. In that case N must be .LE. LDV.
C If JOB is set to zero LDV is not referenced.
C
C WORK* REAL(3N)
C temporary storage vector. Contents changed by CGEEV.
C
C JOB INTEGER
C set by the user to
C = 0 eigenvalues only to be calculated by CGEEV.
C neither V nor LDV are referenced.
C = nonzero eigenvalues and vectors to be calculated.
C In this case A & V must be distinct arrays.
C Also, if LDA > LDV, CGEEV changes all the
C elements of A thru column N. If LDA < LDV,
C CGEEV changes all the elements of V through
C column N. If LDA = LDV only A(I,J) and V(I,
C J) for I,J = 1,...,N are changed by CGEEV.
C
C INFO* INTEGER
C on return from CGEEV the value of INFO is
C = 0 normal return, calculation successful.
C = K if the eigenvalue iteration fails to converge,
C eigenvalues K+1 through N are correct, but
C no eigenvectors were computed even if they were
C requested (JOB nonzero).
C
C Error Messages
C No. 1 recoverable N is greater than LDA
C No. 2 recoverable N is less than one.
C No. 3 recoverable JOB is nonzero and N is greater than LDV
C No. 4 warning LDA > LDV, elements of A other than the
C N by N input elements have been changed
C No. 5 warning LDA < LDV, elements of V other than the
C N by N output elements have been changed
C
C***REFERENCES (NONE)
C***ROUTINES CALLED CBABK2, CBAL, COMQR, COMQR2, CORTH, SCOPY, XERMSG
C***REVISION HISTORY (YYMMDD)
C 800808 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C***END PROLOGUE CGEEV
INTEGER I,IHI,ILO,INFO,J,K,L,LDA,LDV,MDIM,N
REAL A(*),E(*),WORK(*),V(*)
C***FIRST EXECUTABLE STATEMENT CGEEV
IF (N .GT. LDA) CALL XERMSG ('SLATEC', 'CGEEV', 'N .GT. LDA.', 1,
+ 1)
IF(N .GT. LDA) RETURN
IF (N .LT. 1) CALL XERMSG ('SLATEC', 'CGEEV', 'N .LT. 1', 2, 1)
IF(N .LT. 1) RETURN
IF(N .EQ. 1 .AND. JOB .EQ. 0) GO TO 35
MDIM = 2 * LDA
IF(JOB .EQ. 0) GO TO 5
IF (N .GT. LDV) CALL XERMSG ('SLATEC', 'CGEEV',
+ 'JOB .NE. 0 AND N .GT. LDV.', 3, 1)
IF(N .GT. LDV) RETURN
IF(N .EQ. 1) GO TO 35
C
C REARRANGE A IF NECESSARY WHEN LDA.GT.LDV AND JOB .NE.0
C
MDIM = MIN(MDIM,2 * LDV)
IF (LDA .LT. LDV) CALL XERMSG ('SLATEC', 'CGEEV',
+ 'LDA.LT.LDV, ELEMENTS OF V OTHER THAN THE N BY N OUTPUT ' //
+ 'ELEMENTS HAVE BEEN CHANGED.', 5, 0)
IF(LDA.LE.LDV) GO TO 5
CALL XERMSG ('SLATEC', 'CGEEV',
+ 'LDA.GT.LDV, ELEMENTS OF A OTHER THAN THE N BY N INPUT ' //
+ 'ELEMENTS HAVE BEEN CHANGED.', 4, 0)
L = N - 1
DO 4 J=1,L
I = 2 * N
M = 1+J*2*LDV
K = 1+J*2*LDA
CALL SCOPY(I,A(K),1,A(M),1)
4 CONTINUE
5 CONTINUE
C
C SEPARATE REAL AND IMAGINARY PARTS
C
DO 6 J = 1, N
K = (J-1) * MDIM +1
L = K + N
CALL SCOPY(N,A(K+1),2,WORK(1),1)
CALL SCOPY(N,A(K),2,A(K),1)
CALL SCOPY(N,WORK(1),1,A(L),1)
6 CONTINUE
C
C SCALE AND ORTHOGONAL REDUCTION TO HESSENBERG.
C
CALL CBAL(MDIM,N,A(1),A(N+1),ILO,IHI,WORK(1))
CALL CORTH(MDIM,N,ILO,IHI,A(1),A(N+1),WORK(N+1),WORK(2*N+1))
IF(JOB .NE. 0) GO TO 10
C
C EIGENVALUES ONLY
C
CALL COMQR(MDIM,N,ILO,IHI,A(1),A(N+1),E(1),E(N+1),INFO)
GO TO 30
C
C EIGENVALUES AND EIGENVECTORS.
C
10 CALL COMQR2(MDIM,N,ILO,IHI,WORK(N+1),WORK(2*N+1),A(1),A(N+1),
1 E(1),E(N+1),V(1),V(N+1),INFO)
IF (INFO .NE. 0) GO TO 30
CALL CBABK2(MDIM,N,ILO,IHI,WORK(1),N,V(1),V(N+1))
C
C CONVERT EIGENVECTORS TO COMPLEX STORAGE.
C
DO 20 J = 1,N
K = (J-1) * MDIM + 1
I = (J-1) * 2 * LDV + 1
L = K + N
CALL SCOPY(N,V(K),1,WORK(1),1)
CALL SCOPY(N,V(L),1,V(I+1),2)
CALL SCOPY(N,WORK(1),1,V(I),2)
20 CONTINUE
C
C CONVERT EIGENVALUES TO COMPLEX STORAGE.
C
30 CALL SCOPY(N,E(1),1,WORK(1),1)
CALL SCOPY(N,E(N+1),1,E(2),2)
CALL SCOPY(N,WORK(1),1,E(1),2)
RETURN
C
C TAKE CARE OF N=1 CASE
C
35 E(1) = A(1)
E(2) = A(2)
INFO = 0
IF(JOB .EQ. 0) RETURN
V(1) = A(1)
V(2) = A(2)
RETURN
END