mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
243 lines
7.3 KiB
FortranFixed
243 lines
7.3 KiB
FortranFixed
|
*DECK CHIFA
|
||
|
SUBROUTINE CHIFA (A, LDA, N, KPVT, INFO)
|
||
|
C***BEGIN PROLOGUE CHIFA
|
||
|
C***PURPOSE Factor a complex Hermitian matrix by elimination
|
||
|
C (symmetric pivoting).
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2D1A
|
||
|
C***TYPE COMPLEX (SSIFA-S, DSIFA-D, CHIFA-C, CSIFA-C)
|
||
|
C***KEYWORDS HERMITIAN, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION
|
||
|
C***AUTHOR Bunch, J., (UCSD)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C CHIFA factors a complex Hermitian matrix by elimination
|
||
|
C with symmetric pivoting.
|
||
|
C
|
||
|
C To solve A*X = B , follow CHIFA by CHISL.
|
||
|
C To compute INVERSE(A)*C , follow CHIFA by CHISL.
|
||
|
C To compute DETERMINANT(A) , follow CHIFA by CHIDI.
|
||
|
C To compute INERTIA(A) , follow CHIFA by CHIDI.
|
||
|
C To compute INVERSE(A) , follow CHIFA by CHIDI.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C A COMPLEX(LDA,N)
|
||
|
C the Hermitian matrix to be factored.
|
||
|
C Only the diagonal and upper triangle are used.
|
||
|
C
|
||
|
C LDA INTEGER
|
||
|
C the leading dimension of the array A .
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the matrix A .
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C A a block diagonal matrix and the multipliers which
|
||
|
C were used to obtain it.
|
||
|
C The factorization can be written A = U*D*CTRANS(U)
|
||
|
C where U is a product of permutation and unit
|
||
|
C upper triangular matrices , CTRANS(U) is the
|
||
|
C conjugate transpose of U , and D is block diagonal
|
||
|
C with 1 by 1 and 2 by 2 blocks.
|
||
|
C
|
||
|
C KVPT INTEGER(N)
|
||
|
C an integer vector of pivot indices.
|
||
|
C
|
||
|
C INFO INTEGER
|
||
|
C = 0 normal value.
|
||
|
C = K if the K-th pivot block is singular. This is
|
||
|
C not an error condition for this subroutine,
|
||
|
C but it does indicate that CHISL or CHIDI may
|
||
|
C divide by zero if called.
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED CAXPY, CSWAP, ICAMAX
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 891107 Modified routine equivalence list. (WRB)
|
||
|
C 891107 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE CHIFA
|
||
|
INTEGER LDA,N,KPVT(*),INFO
|
||
|
COMPLEX A(LDA,*)
|
||
|
C
|
||
|
COMPLEX AK,AKM1,BK,BKM1,DENOM,MULK,MULKM1,T
|
||
|
REAL ABSAKK,ALPHA,COLMAX,ROWMAX
|
||
|
INTEGER IMAX,IMAXP1,J,JJ,JMAX,K,KM1,KM2,KSTEP,ICAMAX
|
||
|
LOGICAL SWAP
|
||
|
COMPLEX ZDUM
|
||
|
REAL CABS1
|
||
|
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
|
||
|
C***FIRST EXECUTABLE STATEMENT CHIFA
|
||
|
C
|
||
|
C INITIALIZE
|
||
|
C
|
||
|
C ALPHA IS USED IN CHOOSING PIVOT BLOCK SIZE.
|
||
|
C
|
||
|
ALPHA = (1.0E0 + SQRT(17.0E0))/8.0E0
|
||
|
C
|
||
|
INFO = 0
|
||
|
C
|
||
|
C MAIN LOOP ON K, WHICH GOES FROM N TO 1.
|
||
|
C
|
||
|
K = N
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
C LEAVE THE LOOP IF K=0 OR K=1.
|
||
|
C
|
||
|
IF (K .EQ. 0) GO TO 200
|
||
|
IF (K .GT. 1) GO TO 20
|
||
|
KPVT(1) = 1
|
||
|
IF (CABS1(A(1,1)) .EQ. 0.0E0) INFO = 1
|
||
|
GO TO 200
|
||
|
20 CONTINUE
|
||
|
C
|
||
|
C THIS SECTION OF CODE DETERMINES THE KIND OF
|
||
|
C ELIMINATION TO BE PERFORMED. WHEN IT IS COMPLETED,
|
||
|
C KSTEP WILL BE SET TO THE SIZE OF THE PIVOT BLOCK, AND
|
||
|
C SWAP WILL BE SET TO .TRUE. IF AN INTERCHANGE IS
|
||
|
C REQUIRED.
|
||
|
C
|
||
|
KM1 = K - 1
|
||
|
ABSAKK = CABS1(A(K,K))
|
||
|
C
|
||
|
C DETERMINE THE LARGEST OFF-DIAGONAL ELEMENT IN
|
||
|
C COLUMN K.
|
||
|
C
|
||
|
IMAX = ICAMAX(K-1,A(1,K),1)
|
||
|
COLMAX = CABS1(A(IMAX,K))
|
||
|
IF (ABSAKK .LT. ALPHA*COLMAX) GO TO 30
|
||
|
KSTEP = 1
|
||
|
SWAP = .FALSE.
|
||
|
GO TO 90
|
||
|
30 CONTINUE
|
||
|
C
|
||
|
C DETERMINE THE LARGEST OFF-DIAGONAL ELEMENT IN
|
||
|
C ROW IMAX.
|
||
|
C
|
||
|
ROWMAX = 0.0E0
|
||
|
IMAXP1 = IMAX + 1
|
||
|
DO 40 J = IMAXP1, K
|
||
|
ROWMAX = MAX(ROWMAX,CABS1(A(IMAX,J)))
|
||
|
40 CONTINUE
|
||
|
IF (IMAX .EQ. 1) GO TO 50
|
||
|
JMAX = ICAMAX(IMAX-1,A(1,IMAX),1)
|
||
|
ROWMAX = MAX(ROWMAX,CABS1(A(JMAX,IMAX)))
|
||
|
50 CONTINUE
|
||
|
IF (CABS1(A(IMAX,IMAX)) .LT. ALPHA*ROWMAX) GO TO 60
|
||
|
KSTEP = 1
|
||
|
SWAP = .TRUE.
|
||
|
GO TO 80
|
||
|
60 CONTINUE
|
||
|
IF (ABSAKK .LT. ALPHA*COLMAX*(COLMAX/ROWMAX)) GO TO 70
|
||
|
KSTEP = 1
|
||
|
SWAP = .FALSE.
|
||
|
GO TO 80
|
||
|
70 CONTINUE
|
||
|
KSTEP = 2
|
||
|
SWAP = IMAX .NE. KM1
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
IF (MAX(ABSAKK,COLMAX) .NE. 0.0E0) GO TO 100
|
||
|
C
|
||
|
C COLUMN K IS ZERO. SET INFO AND ITERATE THE LOOP.
|
||
|
C
|
||
|
KPVT(K) = K
|
||
|
INFO = K
|
||
|
GO TO 190
|
||
|
100 CONTINUE
|
||
|
IF (KSTEP .EQ. 2) GO TO 140
|
||
|
C
|
||
|
C 1 X 1 PIVOT BLOCK.
|
||
|
C
|
||
|
IF (.NOT.SWAP) GO TO 120
|
||
|
C
|
||
|
C PERFORM AN INTERCHANGE.
|
||
|
C
|
||
|
CALL CSWAP(IMAX,A(1,IMAX),1,A(1,K),1)
|
||
|
DO 110 JJ = IMAX, K
|
||
|
J = K + IMAX - JJ
|
||
|
T = CONJG(A(J,K))
|
||
|
A(J,K) = CONJG(A(IMAX,J))
|
||
|
A(IMAX,J) = T
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
C
|
||
|
C PERFORM THE ELIMINATION.
|
||
|
C
|
||
|
DO 130 JJ = 1, KM1
|
||
|
J = K - JJ
|
||
|
MULK = -A(J,K)/A(K,K)
|
||
|
T = CONJG(MULK)
|
||
|
CALL CAXPY(J,T,A(1,K),1,A(1,J),1)
|
||
|
A(J,J) = CMPLX(REAL(A(J,J)),0.0E0)
|
||
|
A(J,K) = MULK
|
||
|
130 CONTINUE
|
||
|
C
|
||
|
C SET THE PIVOT ARRAY.
|
||
|
C
|
||
|
KPVT(K) = K
|
||
|
IF (SWAP) KPVT(K) = IMAX
|
||
|
GO TO 190
|
||
|
140 CONTINUE
|
||
|
C
|
||
|
C 2 X 2 PIVOT BLOCK.
|
||
|
C
|
||
|
IF (.NOT.SWAP) GO TO 160
|
||
|
C
|
||
|
C PERFORM AN INTERCHANGE.
|
||
|
C
|
||
|
CALL CSWAP(IMAX,A(1,IMAX),1,A(1,K-1),1)
|
||
|
DO 150 JJ = IMAX, KM1
|
||
|
J = KM1 + IMAX - JJ
|
||
|
T = CONJG(A(J,K-1))
|
||
|
A(J,K-1) = CONJG(A(IMAX,J))
|
||
|
A(IMAX,J) = T
|
||
|
150 CONTINUE
|
||
|
T = A(K-1,K)
|
||
|
A(K-1,K) = A(IMAX,K)
|
||
|
A(IMAX,K) = T
|
||
|
160 CONTINUE
|
||
|
C
|
||
|
C PERFORM THE ELIMINATION.
|
||
|
C
|
||
|
KM2 = K - 2
|
||
|
IF (KM2 .EQ. 0) GO TO 180
|
||
|
AK = A(K,K)/A(K-1,K)
|
||
|
AKM1 = A(K-1,K-1)/CONJG(A(K-1,K))
|
||
|
DENOM = 1.0E0 - AK*AKM1
|
||
|
DO 170 JJ = 1, KM2
|
||
|
J = KM1 - JJ
|
||
|
BK = A(J,K)/A(K-1,K)
|
||
|
BKM1 = A(J,K-1)/CONJG(A(K-1,K))
|
||
|
MULK = (AKM1*BK - BKM1)/DENOM
|
||
|
MULKM1 = (AK*BKM1 - BK)/DENOM
|
||
|
T = CONJG(MULK)
|
||
|
CALL CAXPY(J,T,A(1,K),1,A(1,J),1)
|
||
|
T = CONJG(MULKM1)
|
||
|
CALL CAXPY(J,T,A(1,K-1),1,A(1,J),1)
|
||
|
A(J,K) = MULK
|
||
|
A(J,K-1) = MULKM1
|
||
|
A(J,J) = CMPLX(REAL(A(J,J)),0.0E0)
|
||
|
170 CONTINUE
|
||
|
180 CONTINUE
|
||
|
C
|
||
|
C SET THE PIVOT ARRAY.
|
||
|
C
|
||
|
KPVT(K) = 1 - K
|
||
|
IF (SWAP) KPVT(K) = -IMAX
|
||
|
KPVT(K-1) = KPVT(K)
|
||
|
190 CONTINUE
|
||
|
K = K - KSTEP
|
||
|
GO TO 10
|
||
|
200 CONTINUE
|
||
|
RETURN
|
||
|
END
|