mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
225 lines
7.4 KiB
FortranFixed
225 lines
7.4 KiB
FortranFixed
|
*DECK CHPR
|
||
|
SUBROUTINE CHPR (UPLO, N, ALPHA, X, INCX, AP)
|
||
|
C***BEGIN PROLOGUE CHPR
|
||
|
C***PURPOSE Perform the hermitian rank 1 operation.
|
||
|
C***LIBRARY SLATEC (BLAS)
|
||
|
C***CATEGORY D1B4
|
||
|
C***TYPE COMPLEX (CHPR-C)
|
||
|
C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
|
||
|
C***AUTHOR Dongarra, J. J., (ANL)
|
||
|
C Du Croz, J., (NAG)
|
||
|
C Hammarling, S., (NAG)
|
||
|
C Hanson, R. J., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C CHPR performs the hermitian rank 1 operation
|
||
|
C
|
||
|
C A := alpha*x*conjg( x') + A,
|
||
|
C
|
||
|
C where alpha is a real scalar, x is an n element vector and A is an
|
||
|
C n by n hermitian matrix, supplied in packed form.
|
||
|
C
|
||
|
C Parameters
|
||
|
C ==========
|
||
|
C
|
||
|
C UPLO - CHARACTER*1.
|
||
|
C On entry, UPLO specifies whether the upper or lower
|
||
|
C triangular part of the matrix A is supplied in the packed
|
||
|
C array AP as follows:
|
||
|
C
|
||
|
C UPLO = 'U' or 'u' The upper triangular part of A is
|
||
|
C supplied in AP.
|
||
|
C
|
||
|
C UPLO = 'L' or 'l' The lower triangular part of A is
|
||
|
C supplied in AP.
|
||
|
C
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C N - INTEGER.
|
||
|
C On entry, N specifies the order of the matrix A.
|
||
|
C N must be at least zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C ALPHA - REAL .
|
||
|
C On entry, ALPHA specifies the scalar alpha.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C X - COMPLEX array of dimension at least
|
||
|
C ( 1 + ( n - 1 )*abs( INCX ) ).
|
||
|
C Before entry, the incremented array X must contain the n
|
||
|
C element vector x.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C INCX - INTEGER.
|
||
|
C On entry, INCX specifies the increment for the elements of
|
||
|
C X. INCX must not be zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C AP - COMPLEX array of DIMENSION at least
|
||
|
C ( ( n*( n + 1 ) )/2 ).
|
||
|
C Before entry with UPLO = 'U' or 'u', the array AP must
|
||
|
C contain the upper triangular part of the hermitian matrix
|
||
|
C packed sequentially, column by column, so that AP( 1 )
|
||
|
C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
||
|
C and a( 2, 2 ) respectively, and so on. On exit, the array
|
||
|
C AP is overwritten by the upper triangular part of the
|
||
|
C updated matrix.
|
||
|
C Before entry with UPLO = 'L' or 'l', the array AP must
|
||
|
C contain the lower triangular part of the hermitian matrix
|
||
|
C packed sequentially, column by column, so that AP( 1 )
|
||
|
C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
||
|
C and a( 3, 1 ) respectively, and so on. On exit, the array
|
||
|
C AP is overwritten by the lower triangular part of the
|
||
|
C updated matrix.
|
||
|
C Note that the imaginary parts of the diagonal elements need
|
||
|
C not be set, they are assumed to be zero, and on exit they
|
||
|
C are set to zero.
|
||
|
C
|
||
|
C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
|
||
|
C Hanson, R. J. An extended set of Fortran basic linear
|
||
|
C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
|
||
|
C pp. 1-17, March 1988.
|
||
|
C***ROUTINES CALLED LSAME, XERBLA
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 861022 DATE WRITTEN
|
||
|
C 910605 Modified to meet SLATEC prologue standards. Only comment
|
||
|
C lines were modified. (BKS)
|
||
|
C***END PROLOGUE CHPR
|
||
|
C .. Scalar Arguments ..
|
||
|
REAL ALPHA
|
||
|
INTEGER INCX, N
|
||
|
CHARACTER*1 UPLO
|
||
|
C .. Array Arguments ..
|
||
|
COMPLEX AP( * ), X( * )
|
||
|
C .. Parameters ..
|
||
|
COMPLEX ZERO
|
||
|
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
|
||
|
C .. Local Scalars ..
|
||
|
COMPLEX TEMP
|
||
|
INTEGER I, INFO, IX, J, JX, K, KK, KX
|
||
|
C .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
C .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
C .. Intrinsic Functions ..
|
||
|
INTRINSIC CONJG, REAL
|
||
|
C***FIRST EXECUTABLE STATEMENT CHPR
|
||
|
C
|
||
|
C Test the input parameters.
|
||
|
C
|
||
|
INFO = 0
|
||
|
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
|
||
|
$ .NOT.LSAME( UPLO, 'L' ) )THEN
|
||
|
INFO = 1
|
||
|
ELSE IF( N.LT.0 )THEN
|
||
|
INFO = 2
|
||
|
ELSE IF( INCX.EQ.0 )THEN
|
||
|
INFO = 5
|
||
|
END IF
|
||
|
IF( INFO.NE.0 )THEN
|
||
|
CALL XERBLA( 'CHPR ', INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
C
|
||
|
C Quick return if possible.
|
||
|
C
|
||
|
IF( ( N.EQ.0 ).OR.( ALPHA.EQ.REAL( ZERO ) ) )
|
||
|
$ RETURN
|
||
|
C
|
||
|
C Set the start point in X if the increment is not unity.
|
||
|
C
|
||
|
IF( INCX.LE.0 )THEN
|
||
|
KX = 1 - ( N - 1 )*INCX
|
||
|
ELSE IF( INCX.NE.1 )THEN
|
||
|
KX = 1
|
||
|
END IF
|
||
|
C
|
||
|
C Start the operations. In this version the elements of the array AP
|
||
|
C are accessed sequentially with one pass through AP.
|
||
|
C
|
||
|
KK = 1
|
||
|
IF( LSAME( UPLO, 'U' ) )THEN
|
||
|
C
|
||
|
C Form A when upper triangle is stored in AP.
|
||
|
C
|
||
|
IF( INCX.EQ.1 )THEN
|
||
|
DO 20, J = 1, N
|
||
|
IF( X( J ).NE.ZERO )THEN
|
||
|
TEMP = ALPHA*CONJG( X( J ) )
|
||
|
K = KK
|
||
|
DO 10, I = 1, J - 1
|
||
|
AP( K ) = AP( K ) + X( I )*TEMP
|
||
|
K = K + 1
|
||
|
10 CONTINUE
|
||
|
AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
|
||
|
$ + REAL( X( J )*TEMP )
|
||
|
ELSE
|
||
|
AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
|
||
|
END IF
|
||
|
KK = KK + J
|
||
|
20 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX
|
||
|
DO 40, J = 1, N
|
||
|
IF( X( JX ).NE.ZERO )THEN
|
||
|
TEMP = ALPHA*CONJG( X( JX ) )
|
||
|
IX = KX
|
||
|
DO 30, K = KK, KK + J - 2
|
||
|
AP( K ) = AP( K ) + X( IX )*TEMP
|
||
|
IX = IX + INCX
|
||
|
30 CONTINUE
|
||
|
AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
|
||
|
$ + REAL( X( JX )*TEMP )
|
||
|
ELSE
|
||
|
AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
|
||
|
END IF
|
||
|
JX = JX + INCX
|
||
|
KK = KK + J
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
C
|
||
|
C Form A when lower triangle is stored in AP.
|
||
|
C
|
||
|
IF( INCX.EQ.1 )THEN
|
||
|
DO 60, J = 1, N
|
||
|
IF( X( J ).NE.ZERO )THEN
|
||
|
TEMP = ALPHA*CONJG( X( J ) )
|
||
|
AP( KK ) = REAL( AP( KK ) ) + REAL( TEMP*X( J ) )
|
||
|
K = KK + 1
|
||
|
DO 50, I = J + 1, N
|
||
|
AP( K ) = AP( K ) + X( I )*TEMP
|
||
|
K = K + 1
|
||
|
50 CONTINUE
|
||
|
ELSE
|
||
|
AP( KK ) = REAL( AP( KK ) )
|
||
|
END IF
|
||
|
KK = KK + N - J + 1
|
||
|
60 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX
|
||
|
DO 80, J = 1, N
|
||
|
IF( X( JX ).NE.ZERO )THEN
|
||
|
TEMP = ALPHA*CONJG( X( JX ) )
|
||
|
AP( KK ) = REAL( AP( KK ) ) + REAL( TEMP*X( JX ) )
|
||
|
IX = JX
|
||
|
DO 70, K = KK + 1, KK + N - J
|
||
|
IX = IX + INCX
|
||
|
AP( K ) = AP( K ) + X( IX )*TEMP
|
||
|
70 CONTINUE
|
||
|
ELSE
|
||
|
AP( KK ) = REAL( AP( KK ) )
|
||
|
END IF
|
||
|
JX = JX + INCX
|
||
|
KK = KK + N - J + 1
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
C
|
||
|
RETURN
|
||
|
C
|
||
|
C End of CHPR .
|
||
|
C
|
||
|
END
|