OpenLibm/slatec/chu.f

167 lines
4.6 KiB
FortranFixed
Raw Normal View History

*DECK CHU
FUNCTION CHU (A, B, X)
C***BEGIN PROLOGUE CHU
C***PURPOSE Compute the logarithmic confluent hypergeometric function.
C***LIBRARY SLATEC (FNLIB)
C***CATEGORY C11
C***TYPE SINGLE PRECISION (CHU-S, DCHU-D)
C***KEYWORDS FNLIB, LOGARITHMIC CONFLUENT HYPERGEOMETRIC FUNCTION,
C SPECIAL FUNCTIONS
C***AUTHOR Fullerton, W., (LANL)
C***DESCRIPTION
C
C CHU computes the logarithmic confluent hypergeometric function,
C U(A,B,X).
C
C Input Parameters:
C A real
C B real
C X real and positive
C
C This routine is not valid when 1+A-B is close to zero if X is small.
C
C***REFERENCES (NONE)
C***ROUTINES CALLED EXPREL, GAMMA, GAMR, POCH, POCH1, R1MACH, R9CHU,
C XERMSG
C***REVISION HISTORY (YYMMDD)
C 770801 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900727 Added EXTERNAL statement. (WRB)
C***END PROLOGUE CHU
EXTERNAL GAMMA
SAVE PI, EPS
DATA PI / 3.1415926535 8979324 E0 /
DATA EPS / 0.0 /
C***FIRST EXECUTABLE STATEMENT CHU
IF (EPS.EQ.0.0) EPS = R1MACH(3)
C
IF (X .EQ. 0.0) CALL XERMSG ('SLATEC', 'CHU',
+ 'X IS ZERO SO CHU IS INFINITE', 1, 2)
IF (X .LT. 0.0) CALL XERMSG ('SLATEC', 'CHU',
+ 'X IS NEGATIVE, USE CCHU', 2, 2)
C
IF (MAX(ABS(A),1.0)*MAX(ABS(1.0+A-B),1.0).LT.0.99*ABS(X))
1 GO TO 120
C
C THE ASCENDING SERIES WILL BE USED, BECAUSE THE DESCENDING RATIONAL
C APPROXIMATION (WHICH IS BASED ON THE ASYMPTOTIC SERIES) IS UNSTABLE.
C
IF (ABS(1.0+A-B) .LT. SQRT(EPS)) CALL XERMSG ('SLATEC', 'CHU',
+ 'ALGORITHM IS BAD WHEN 1+A-B IS NEAR ZERO FOR SMALL X', 10, 2)
C
AINTB = AINT(B+0.5)
IF (B.LT.0.0) AINTB = AINT(B-0.5)
BEPS = B - AINTB
N = AINTB
C
ALNX = LOG(X)
XTOEPS = EXP(-BEPS*ALNX)
C
C EVALUATE THE FINITE SUM. -----------------------------------------
C
IF (N.GE.1) GO TO 40
C
C CONSIDER THE CASE B .LT. 1.0 FIRST.
C
SUM = 1.0
IF (N.EQ.0) GO TO 30
C
T = 1.0
M = -N
DO 20 I=1,M
XI1 = I - 1
T = T*(A+XI1)*X/((B+XI1)*(XI1+1.0))
SUM = SUM + T
20 CONTINUE
C
30 SUM = POCH(1.0+A-B, -A) * SUM
GO TO 70
C
C NOW CONSIDER THE CASE B .GE. 1.0.
C
40 SUM = 0.0
M = N - 2
IF (M.LT.0) GO TO 70
T = 1.0
SUM = 1.0
IF (M.EQ.0) GO TO 60
C
DO 50 I=1,M
XI = I
T = T * (A-B+XI)*X/((1.0-B+XI)*XI)
SUM = SUM + T
50 CONTINUE
C
60 SUM = GAMMA(B-1.0) * GAMR(A) * X**(1-N) * XTOEPS * SUM
C
C NOW EVALUATE THE INFINITE SUM. -----------------------------------
C
70 ISTRT = 0
IF (N.LT.1) ISTRT = 1 - N
XI = ISTRT
C
FACTOR = (-1.0)**N * GAMR(1.0+A-B) * X**ISTRT
IF (BEPS.NE.0.0) FACTOR = FACTOR * BEPS*PI/SIN(BEPS*PI)
C
POCHAI = POCH (A, XI)
GAMRI1 = GAMR (XI+1.0)
GAMRNI = GAMR (AINTB+XI)
B0 = FACTOR * POCH(A,XI-BEPS) * GAMRNI * GAMR(XI+1.0-BEPS)
C
IF (ABS(XTOEPS-1.0).GT.0.5) GO TO 90
C
C X**(-BEPS) IS CLOSE TO 1.0, SO WE MUST BE CAREFUL IN EVALUATING
C THE DIFFERENCES
C
PCH1AI = POCH1 (A+XI, -BEPS)
PCH1I = POCH1 (XI+1.0-BEPS, BEPS)
C0 = FACTOR * POCHAI * GAMRNI * GAMRI1 * (
1 -POCH1(B+XI, -BEPS) + PCH1AI - PCH1I + BEPS*PCH1AI*PCH1I )
C
C XEPS1 = (1.0 - X**(-BEPS)) / BEPS
XEPS1 = ALNX * EXPREL(-BEPS*ALNX)
C
CHU = SUM + C0 + XEPS1*B0
XN = N
DO 80 I=1,1000
XI = ISTRT + I
XI1 = ISTRT + I - 1
B0 = (A+XI1-BEPS)*B0*X/((XN+XI1)*(XI-BEPS))
C0 = (A+XI1)*C0*X/((B+XI1)*XI) - ((A-1.0)*(XN+2.*XI-1.0)
1 + XI*(XI-BEPS)) * B0/(XI*(B+XI1)*(A+XI1-BEPS))
T = C0 + XEPS1*B0
CHU = CHU + T
IF (ABS(T).LT.EPS*ABS(CHU)) GO TO 130
80 CONTINUE
CALL XERMSG ('SLATEC', 'CHU',
+ 'NO CONVERGENCE IN 1000 TERMS OF THE ASCENDING SERIES', 3, 2)
C
C X**(-BEPS) IS VERY DIFFERENT FROM 1.0, SO THE STRAIGHTFORWARD
C FORMULATION IS STABLE.
C
90 A0 = FACTOR * POCHAI * GAMR(B+XI) * GAMRI1 / BEPS
B0 = XTOEPS*B0/BEPS
C
CHU = SUM + A0 - B0
DO 100 I=1,1000
XI = ISTRT + I
XI1 = ISTRT + I - 1
A0 = (A+XI1)*A0*X/((B+XI1)*XI)
B0 = (A+XI1-BEPS)*B0*X/((AINTB+XI1)*(XI-BEPS))
T = A0 - B0
CHU = CHU + T
IF (ABS(T).LT.EPS*ABS(CHU)) GO TO 130
100 CONTINUE
CALL XERMSG ('SLATEC', 'CHU',
+ 'NO CONVERGENCE IN 1000 TERMS OF THE ASCENDING SERIES', 3, 2)
C
C USE LUKE-S RATIONAL APPROX IN THE ASYMPTOTIC REGION.
C
120 CHU = X**(-A) * R9CHU(A, B, X)
C
130 RETURN
END