mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
93 lines
2.9 KiB
FortranFixed
93 lines
2.9 KiB
FortranFixed
|
*DECK CLNGAM
|
||
|
COMPLEX FUNCTION CLNGAM (ZIN)
|
||
|
C***BEGIN PROLOGUE CLNGAM
|
||
|
C***PURPOSE Compute the logarithm of the absolute value of the Gamma
|
||
|
C function.
|
||
|
C***LIBRARY SLATEC (FNLIB)
|
||
|
C***CATEGORY C7A
|
||
|
C***TYPE COMPLEX (ALNGAM-S, DLNGAM-D, CLNGAM-C)
|
||
|
C***KEYWORDS ABSOLUTE VALUE, COMPLETE GAMMA FUNCTION, FNLIB, LOGARITHM,
|
||
|
C SPECIAL FUNCTIONS
|
||
|
C***AUTHOR Fullerton, W., (LANL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C CLNGAM computes the natural log of the complex valued gamma function
|
||
|
C at ZIN, where ZIN is a complex number. This is a preliminary version,
|
||
|
C which is not accurate.
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED C9LGMC, CARG, CLNREL, R1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780401 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890531 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C***END PROLOGUE CLNGAM
|
||
|
COMPLEX ZIN, Z, CORR, CLNREL, C9LGMC
|
||
|
LOGICAL FIRST
|
||
|
SAVE PI, SQ2PIL, BOUND, DXREL, FIRST
|
||
|
DATA PI / 3.1415926535 8979324E0 /
|
||
|
DATA SQ2PIL / 0.9189385332 0467274E0 /
|
||
|
DATA FIRST /.TRUE./
|
||
|
C***FIRST EXECUTABLE STATEMENT CLNGAM
|
||
|
IF (FIRST) THEN
|
||
|
N = -0.30*LOG(R1MACH(3))
|
||
|
C BOUND = N*(0.1*EPS)**(-1/(2*N-1))/(PI*EXP(1))
|
||
|
BOUND = 0.1171*N*(0.1*R1MACH(3))**(-1./(2*N-1))
|
||
|
DXREL = SQRT (R1MACH(4))
|
||
|
ENDIF
|
||
|
FIRST = .FALSE.
|
||
|
C
|
||
|
Z = ZIN
|
||
|
X = REAL(ZIN)
|
||
|
Y = AIMAG(ZIN)
|
||
|
C
|
||
|
CORR = (0.0, 0.0)
|
||
|
CABSZ = ABS(Z)
|
||
|
IF (X.GE.0.0 .AND. CABSZ.GT.BOUND) GO TO 50
|
||
|
IF (X.LT.0.0 .AND. ABS(Y).GT.BOUND) GO TO 50
|
||
|
C
|
||
|
IF (CABSZ.LT.BOUND) GO TO 20
|
||
|
C
|
||
|
C USE THE REFLECTION FORMULA FOR REAL(Z) NEGATIVE, ABS(Z) LARGE, AND
|
||
|
C ABS(AIMAG(Y)) SMALL.
|
||
|
C
|
||
|
IF (Y.GT.0.0) Z = CONJG (Z)
|
||
|
CORR = EXP (-CMPLX(0.0,2.0*PI)*Z)
|
||
|
IF (REAL(CORR) .EQ. 1.0 .AND. AIMAG(CORR) .EQ. 0.0) CALL XERMSG
|
||
|
+ ('SLATEC', 'CLNGAM', 'Z IS A NEGATIVE INTEGER', 3, 2)
|
||
|
C
|
||
|
CLNGAM = SQ2PIL + 1.0 - CMPLX(0.0,PI)*(Z-0.5) - CLNREL(-CORR)
|
||
|
1 + (Z-0.5)*LOG(1.0-Z) - Z - C9LGMC(1.0-Z)
|
||
|
IF (Y.GT.0.0) CLNGAM = CONJG (CLNGAM)
|
||
|
RETURN
|
||
|
C
|
||
|
C USE THE RECURSION RELATION FOR ABS(Z) SMALL.
|
||
|
C
|
||
|
20 IF (X.GE.(-0.5) .OR. ABS(Y).GT.DXREL) GO TO 30
|
||
|
IF (ABS((Z-AINT(X-0.5))/X) .LT. DXREL) CALL XERMSG ('SLATEC',
|
||
|
+ 'CLNGAM',
|
||
|
+ 'ANSWER LT HALF PRECISION BECAUSE Z TOO NEAR NEGATIVE INTEGER',
|
||
|
+ 1, 1)
|
||
|
C
|
||
|
30 N = SQRT (BOUND**2 - Y**2) - X + 1.0
|
||
|
ARGSUM = 0.0
|
||
|
CORR = (1.0, 0.0)
|
||
|
DO 40 I=1,N
|
||
|
ARGSUM = ARGSUM + CARG(Z)
|
||
|
CORR = Z*CORR
|
||
|
Z = 1.0 + Z
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
IF (REAL(CORR) .EQ. 0.0 .AND. AIMAG(CORR) .EQ. 0.0) CALL XERMSG
|
||
|
+ ('SLATEC', 'CLNGAM', 'Z IS A NEGATIVE INTEGER', 3, 2)
|
||
|
CORR = -CMPLX (LOG(ABS(CORR)), ARGSUM)
|
||
|
C
|
||
|
C USE STIRLING-S APPROXIMATION FOR LARGE Z.
|
||
|
C
|
||
|
50 CLNGAM = SQ2PIL + (Z-0.5)*LOG(Z) - Z + CORR + C9LGMC(Z)
|
||
|
RETURN
|
||
|
C
|
||
|
END
|