mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
160 lines
5.4 KiB
FortranFixed
160 lines
5.4 KiB
FortranFixed
|
*DECK CORTH
|
||
|
SUBROUTINE CORTH (NM, N, LOW, IGH, AR, AI, ORTR, ORTI)
|
||
|
C***BEGIN PROLOGUE CORTH
|
||
|
C***PURPOSE Reduce a complex general matrix to complex upper Hessenberg
|
||
|
C form using unitary similarity transformations.
|
||
|
C***LIBRARY SLATEC (EISPACK)
|
||
|
C***CATEGORY D4C1B2
|
||
|
C***TYPE COMPLEX (ORTHES-S, CORTH-C)
|
||
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
||
|
C***AUTHOR Smith, B. T., et al.
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subroutine is a translation of a complex analogue of
|
||
|
C the ALGOL procedure ORTHES, NUM. MATH. 12, 349-368(1968)
|
||
|
C by Martin and Wilkinson.
|
||
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
|
||
|
C
|
||
|
C Given a COMPLEX GENERAL matrix, this subroutine
|
||
|
C reduces a submatrix situated in rows and columns
|
||
|
C LOW through IGH to upper Hessenberg form by
|
||
|
C unitary similarity transformations.
|
||
|
C
|
||
|
C On INPUT
|
||
|
C
|
||
|
C NM must be set to the row dimension of the two-dimensional
|
||
|
C array parameters, AR and AI, as declared in the calling
|
||
|
C program dimension statement. NM is an INTEGER variable.
|
||
|
C
|
||
|
C N is the order of the matrix A=(AR,AI). N is an INTEGER
|
||
|
C variable. N must be less than or equal to NM.
|
||
|
C
|
||
|
C LOW and IGH are two INTEGER variables determined by the
|
||
|
C balancing subroutine CBAL. If CBAL has not been used,
|
||
|
C set LOW=1 and IGH equal to the order of the matrix, N.
|
||
|
C
|
||
|
C AR and AI contain the real and imaginary parts, respectively,
|
||
|
C of the complex input matrix. AR and AI are two-dimensional
|
||
|
C REAL arrays, dimensioned AR(NM,N) and AI(NM,N).
|
||
|
C
|
||
|
C On OUTPUT
|
||
|
C
|
||
|
C AR and AI contain the real and imaginary parts, respectively,
|
||
|
C of the Hessenberg matrix. Information about the unitary
|
||
|
C transformations used in the reduction is stored in the
|
||
|
C remaining triangles under the Hessenberg matrix.
|
||
|
C
|
||
|
C ORTR and ORTI contain further information about the unitary
|
||
|
C transformations. Only elements LOW through IGH are used.
|
||
|
C ORTR and ORTI are one-dimensional REAL arrays, dimensioned
|
||
|
C ORTR(IGH) and ORTI(IGH).
|
||
|
C
|
||
|
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
|
||
|
C
|
||
|
C Questions and comments should be directed to B. S. Garbow,
|
||
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
||
|
C ------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
||
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
||
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
||
|
C 1976.
|
||
|
C***ROUTINES CALLED PYTHAG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 760101 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE CORTH
|
||
|
C
|
||
|
INTEGER I,J,M,N,II,JJ,LA,MP,NM,IGH,KP1,LOW
|
||
|
REAL AR(NM,*),AI(NM,*),ORTR(*),ORTI(*)
|
||
|
REAL F,G,H,FI,FR,SCALE
|
||
|
REAL PYTHAG
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT CORTH
|
||
|
LA = IGH - 1
|
||
|
KP1 = LOW + 1
|
||
|
IF (LA .LT. KP1) GO TO 200
|
||
|
C
|
||
|
DO 180 M = KP1, LA
|
||
|
H = 0.0E0
|
||
|
ORTR(M) = 0.0E0
|
||
|
ORTI(M) = 0.0E0
|
||
|
SCALE = 0.0E0
|
||
|
C .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
|
||
|
DO 90 I = M, IGH
|
||
|
90 SCALE = SCALE + ABS(AR(I,M-1)) + ABS(AI(I,M-1))
|
||
|
C
|
||
|
IF (SCALE .EQ. 0.0E0) GO TO 180
|
||
|
MP = M + IGH
|
||
|
C .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
|
||
|
DO 100 II = M, IGH
|
||
|
I = MP - II
|
||
|
ORTR(I) = AR(I,M-1) / SCALE
|
||
|
ORTI(I) = AI(I,M-1) / SCALE
|
||
|
H = H + ORTR(I) * ORTR(I) + ORTI(I) * ORTI(I)
|
||
|
100 CONTINUE
|
||
|
C
|
||
|
G = SQRT(H)
|
||
|
F = PYTHAG(ORTR(M),ORTI(M))
|
||
|
IF (F .EQ. 0.0E0) GO TO 103
|
||
|
H = H + F * G
|
||
|
G = G / F
|
||
|
ORTR(M) = (1.0E0 + G) * ORTR(M)
|
||
|
ORTI(M) = (1.0E0 + G) * ORTI(M)
|
||
|
GO TO 105
|
||
|
C
|
||
|
103 ORTR(M) = G
|
||
|
AR(M,M-1) = SCALE
|
||
|
C .......... FORM (I-(U*UT)/H) * A ..........
|
||
|
105 DO 130 J = M, N
|
||
|
FR = 0.0E0
|
||
|
FI = 0.0E0
|
||
|
C .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
|
||
|
DO 110 II = M, IGH
|
||
|
I = MP - II
|
||
|
FR = FR + ORTR(I) * AR(I,J) + ORTI(I) * AI(I,J)
|
||
|
FI = FI + ORTR(I) * AI(I,J) - ORTI(I) * AR(I,J)
|
||
|
110 CONTINUE
|
||
|
C
|
||
|
FR = FR / H
|
||
|
FI = FI / H
|
||
|
C
|
||
|
DO 120 I = M, IGH
|
||
|
AR(I,J) = AR(I,J) - FR * ORTR(I) + FI * ORTI(I)
|
||
|
AI(I,J) = AI(I,J) - FR * ORTI(I) - FI * ORTR(I)
|
||
|
120 CONTINUE
|
||
|
C
|
||
|
130 CONTINUE
|
||
|
C .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) ..........
|
||
|
DO 160 I = 1, IGH
|
||
|
FR = 0.0E0
|
||
|
FI = 0.0E0
|
||
|
C .......... FOR J=IGH STEP -1 UNTIL M DO -- ..........
|
||
|
DO 140 JJ = M, IGH
|
||
|
J = MP - JJ
|
||
|
FR = FR + ORTR(J) * AR(I,J) - ORTI(J) * AI(I,J)
|
||
|
FI = FI + ORTR(J) * AI(I,J) + ORTI(J) * AR(I,J)
|
||
|
140 CONTINUE
|
||
|
C
|
||
|
FR = FR / H
|
||
|
FI = FI / H
|
||
|
C
|
||
|
DO 150 J = M, IGH
|
||
|
AR(I,J) = AR(I,J) - FR * ORTR(J) - FI * ORTI(J)
|
||
|
AI(I,J) = AI(I,J) + FR * ORTI(J) - FI * ORTR(J)
|
||
|
150 CONTINUE
|
||
|
C
|
||
|
160 CONTINUE
|
||
|
C
|
||
|
ORTR(M) = SCALE * ORTR(M)
|
||
|
ORTI(M) = SCALE * ORTI(M)
|
||
|
AR(M,M-1) = -G * AR(M,M-1)
|
||
|
AI(M,M-1) = -G * AI(M,M-1)
|
||
|
180 CONTINUE
|
||
|
C
|
||
|
200 RETURN
|
||
|
END
|