OpenLibm/slatec/cpadd.f

165 lines
4.4 KiB
FortranFixed
Raw Normal View History

*DECK CPADD
SUBROUTINE CPADD (N, IERROR, A, C, CBP, BP, BH)
C***BEGIN PROLOGUE CPADD
C***SUBSIDIARY
C***PURPOSE Subsidiary to CBLKTR
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (CPADD-S)
C***AUTHOR (UNKNOWN)
C***DESCRIPTION
C
C CPADD computes the eigenvalues of the periodic tridiagonal matrix
C with coefficients AN,BN,CN.
C
C N is the order of the BH and BP polynomials.
C BP contains the eigenvalues on output.
C CBP is the same as BP except type complex.
C BH is used to temporarily store the roots of the B HAT polynomial
C which enters through BP.
C
C***SEE ALSO CBLKTR
C***ROUTINES CALLED BCRH, PGSF, PPGSF, PPPSF
C***COMMON BLOCKS CCBLK
C***REVISION HISTORY (YYMMDD)
C 801001 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900402 Added TYPE section. (WRB)
C***END PROLOGUE CPADD
C
COMPLEX CX ,FSG ,HSG ,
1 DD ,F ,FP ,FPP ,
2 CDIS ,R1 ,R2 ,R3 ,
3 CBP
DIMENSION A(*) ,C(*) ,BP(*) ,BH(*) ,
1 CBP(*)
COMMON /CCBLK/ NPP ,K ,EPS ,CNV ,
1 NM ,NCMPLX ,IK
EXTERNAL PGSF ,PPPSF ,PPGSF
C***FIRST EXECUTABLE STATEMENT CPADD
SCNV = SQRT(CNV)
IZ = N
IF (BP(N)-BP(1)) 101,142,103
101 DO 102 J=1,N
NT = N-J
BH(J) = BP(NT+1)
102 CONTINUE
GO TO 105
103 DO 104 J=1,N
BH(J) = BP(J)
104 CONTINUE
105 NCMPLX = 0
MODIZ = MOD(IZ,2)
IS = 1
IF (MODIZ) 106,107,106
106 IF (A(1)) 110,142,107
107 XL = BH(1)
DB = BH(3)-BH(1)
108 XL = XL-DB
IF (PGSF(XL,IZ,C,A,BH)) 108,108,109
109 SGN = -1.
CBP(1) = CMPLX(BCRH(XL,BH(1),IZ,C,A,BH,PGSF,SGN),0.)
IS = 2
110 IF = IZ-1
IF (MODIZ) 111,112,111
111 IF (A(1)) 112,142,115
112 XR = BH(IZ)
DB = BH(IZ)-BH(IZ-2)
113 XR = XR+DB
IF (PGSF(XR,IZ,C,A,BH)) 113,114,114
114 SGN = 1.
CBP(IZ) = CMPLX(BCRH(BH(IZ),XR,IZ,C,A,BH,PGSF,SGN),0.)
IF = IZ-2
115 DO 136 IG=IS,IF,2
XL = BH(IG)
XR = BH(IG+1)
SGN = -1.
XM = BCRH(XL,XR,IZ,C,A,BH,PPPSF,SGN)
PSG = PGSF(XM,IZ,C,A,BH)
IF (ABS(PSG)-EPS) 118,118,116
116 IF (PSG*PPGSF(XM,IZ,C,A,BH)) 117,118,119
C
C CASE OF A REAL ZERO
C
117 SGN = 1.
CBP(IG) = CMPLX(BCRH(BH(IG),XM,IZ,C,A,BH,PGSF,SGN),0.)
SGN = -1.
CBP(IG+1) = CMPLX(BCRH(XM,BH(IG+1),IZ,C,A,BH,PGSF,SGN),0.)
GO TO 136
C
C CASE OF A MULTIPLE ZERO
C
118 CBP(IG) = CMPLX(XM,0.)
CBP(IG+1) = CMPLX(XM,0.)
GO TO 136
C
C CASE OF A COMPLEX ZERO
C
119 IT = 0
ICV = 0
CX = CMPLX(XM,0.)
120 FSG = (1.,0.)
HSG = (1.,0.)
FP = (0.,0.)
FPP = (0.,0.)
DO 121 J=1,IZ
DD = 1./(CX-BH(J))
FSG = FSG*A(J)*DD
HSG = HSG*C(J)*DD
FP = FP+DD
FPP = FPP-DD*DD
121 CONTINUE
IF (MODIZ) 123,122,123
122 F = (1.,0.)-FSG-HSG
GO TO 124
123 F = (1.,0.)+FSG+HSG
124 I3 = 0
IF (ABS(FP)) 126,126,125
125 I3 = 1
R3 = -F/FP
126 IF (ABS(FPP)) 132,132,127
127 CDIS = SQRT(FP**2-2.*F*FPP)
R1 = CDIS-FP
R2 = -FP-CDIS
IF (ABS(R1)-ABS(R2)) 129,129,128
128 R1 = R1/FPP
GO TO 130
129 R1 = R2/FPP
130 R2 = 2.*F/FPP/R1
IF (ABS(R2) .LT. ABS(R1)) R1 = R2
IF (I3) 133,133,131
131 IF (ABS(R3) .LT. ABS(R1)) R1 = R3
GO TO 133
132 R1 = R3
133 CX = CX+R1
IT = IT+1
IF (IT .GT. 50) GO TO 142
IF (ABS(R1) .GT. SCNV) GO TO 120
IF (ICV) 134,134,135
134 ICV = 1
GO TO 120
135 CBP(IG) = CX
CBP(IG+1) = CONJG(CX)
136 CONTINUE
IF (ABS(CBP(N))-ABS(CBP(1))) 137,142,139
137 NHALF = N/2
DO 138 J=1,NHALF
NT = N-J
CX = CBP(J)
CBP(J) = CBP(NT+1)
CBP(NT+1) = CX
138 CONTINUE
139 NCMPLX = 1
DO 140 J=2,IZ
IF (AIMAG(CBP(J))) 143,140,143
140 CONTINUE
NCMPLX = 0
DO 141 J=2,IZ
BP(J) = REAL(CBP(J))
141 CONTINUE
GO TO 143
142 IERROR = 4
143 CONTINUE
RETURN
END