mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
268 lines
8.7 KiB
FortranFixed
268 lines
8.7 KiB
FortranFixed
|
*DECK CPBCO
|
||
|
SUBROUTINE CPBCO (ABD, LDA, N, M, RCOND, Z, INFO)
|
||
|
C***BEGIN PROLOGUE CPBCO
|
||
|
C***PURPOSE Factor a complex Hermitian positive definite matrix stored
|
||
|
C in band form and estimate the condition number of the
|
||
|
C matrix.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2D2
|
||
|
C***TYPE COMPLEX (SPBCO-S, DPBCO-D, CPBCO-C)
|
||
|
C***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
|
||
|
C MATRIX FACTORIZATION, POSITIVE DEFINITE
|
||
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C CPBCO factors a complex Hermitian positive definite matrix
|
||
|
C stored in band form and estimates the condition of the matrix.
|
||
|
C
|
||
|
C If RCOND is not needed, CPBFA is slightly faster.
|
||
|
C To solve A*X = B , follow CPBCO by CPBSL.
|
||
|
C To compute INVERSE(A)*C , follow CPBCO by CPBSL.
|
||
|
C To compute DETERMINANT(A) , follow CPBCO by CPBDI.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C ABD COMPLEX(LDA, N)
|
||
|
C the matrix to be factored. The columns of the upper
|
||
|
C triangle are stored in the columns of ABD and the
|
||
|
C diagonals of the upper triangle are stored in the
|
||
|
C rows of ABD . See the comments below for details.
|
||
|
C
|
||
|
C LDA INTEGER
|
||
|
C the leading dimension of the array ABD .
|
||
|
C LDA must be .GE. M + 1 .
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the matrix A .
|
||
|
C
|
||
|
C M INTEGER
|
||
|
C the number of diagonals above the main diagonal.
|
||
|
C 0 .LE. M .LT. N .
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C ABD an upper triangular matrix R , stored in band
|
||
|
C form, so that A = CTRANS(R)*R .
|
||
|
C If INFO .NE. 0 , the factorization is not complete.
|
||
|
C
|
||
|
C RCOND REAL
|
||
|
C an estimate of the reciprocal condition of A .
|
||
|
C For the system A*X = B , relative perturbations
|
||
|
C in A and B of size EPSILON may cause
|
||
|
C relative perturbations in X of size EPSILON/RCOND .
|
||
|
C If RCOND is so small that the logical expression
|
||
|
C 1.0 + RCOND .EQ. 1.0
|
||
|
C is true, then A may be singular to working
|
||
|
C precision. In particular, RCOND is zero if
|
||
|
C exact singularity is detected or the estimate
|
||
|
C underflows. If INFO .NE. 0 , RCOND is unchanged.
|
||
|
C
|
||
|
C Z COMPLEX(N)
|
||
|
C a work vector whose contents are usually unimportant.
|
||
|
C If A is singular to working precision, then Z is
|
||
|
C an approximate null vector in the sense that
|
||
|
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
|
||
|
C If INFO .NE. 0 , Z is unchanged.
|
||
|
C
|
||
|
C INFO INTEGER
|
||
|
C = 0 for normal return.
|
||
|
C = K signals an error condition. The leading minor
|
||
|
C of order K is not positive definite.
|
||
|
C
|
||
|
C Band Storage
|
||
|
C
|
||
|
C If A is a Hermitian positive definite band matrix,
|
||
|
C the following program segment will set up the input.
|
||
|
C
|
||
|
C M = (band width above diagonal)
|
||
|
C DO 20 J = 1, N
|
||
|
C I1 = MAX(1, J-M)
|
||
|
C DO 10 I = I1, J
|
||
|
C K = I-J+M+1
|
||
|
C ABD(K,J) = A(I,J)
|
||
|
C 10 CONTINUE
|
||
|
C 20 CONTINUE
|
||
|
C
|
||
|
C This uses M + 1 rows of A , except for the M by M
|
||
|
C upper left triangle, which is ignored.
|
||
|
C
|
||
|
C Example: If the original matrix is
|
||
|
C
|
||
|
C 11 12 13 0 0 0
|
||
|
C 12 22 23 24 0 0
|
||
|
C 13 23 33 34 35 0
|
||
|
C 0 24 34 44 45 46
|
||
|
C 0 0 35 45 55 56
|
||
|
C 0 0 0 46 56 66
|
||
|
C
|
||
|
C then N = 6 , M = 2 and ABD should contain
|
||
|
C
|
||
|
C * * 13 24 35 46
|
||
|
C * 12 23 34 45 56
|
||
|
C 11 22 33 44 55 66
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED CAXPY, CDOTC, CPBFA, CSSCAL, SCASUM
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE CPBCO
|
||
|
INTEGER LDA,N,M,INFO
|
||
|
COMPLEX ABD(LDA,*),Z(*)
|
||
|
REAL RCOND
|
||
|
C
|
||
|
COMPLEX CDOTC,EK,T,WK,WKM
|
||
|
REAL ANORM,S,SCASUM,SM,YNORM
|
||
|
INTEGER I,J,J2,K,KB,KP1,L,LA,LB,LM,MU
|
||
|
COMPLEX ZDUM,ZDUM2,CSIGN1
|
||
|
REAL CABS1
|
||
|
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
|
||
|
CSIGN1(ZDUM,ZDUM2) = CABS1(ZDUM)*(ZDUM2/CABS1(ZDUM2))
|
||
|
C
|
||
|
C FIND NORM OF A
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT CPBCO
|
||
|
DO 30 J = 1, N
|
||
|
L = MIN(J,M+1)
|
||
|
MU = MAX(M+2-J,1)
|
||
|
Z(J) = CMPLX(SCASUM(L,ABD(MU,J),1),0.0E0)
|
||
|
K = J - L
|
||
|
IF (M .LT. MU) GO TO 20
|
||
|
DO 10 I = MU, M
|
||
|
K = K + 1
|
||
|
Z(K) = CMPLX(REAL(Z(K))+CABS1(ABD(I,J)),0.0E0)
|
||
|
10 CONTINUE
|
||
|
20 CONTINUE
|
||
|
30 CONTINUE
|
||
|
ANORM = 0.0E0
|
||
|
DO 40 J = 1, N
|
||
|
ANORM = MAX(ANORM,REAL(Z(J)))
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
C FACTOR
|
||
|
C
|
||
|
CALL CPBFA(ABD,LDA,N,M,INFO)
|
||
|
IF (INFO .NE. 0) GO TO 180
|
||
|
C
|
||
|
C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
|
||
|
C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
|
||
|
C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
|
||
|
C GROWTH IN THE ELEMENTS OF W WHERE CTRANS(R)*W = E .
|
||
|
C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
|
||
|
C
|
||
|
C SOLVE CTRANS(R)*W = E
|
||
|
C
|
||
|
EK = (1.0E0,0.0E0)
|
||
|
DO 50 J = 1, N
|
||
|
Z(J) = (0.0E0,0.0E0)
|
||
|
50 CONTINUE
|
||
|
DO 110 K = 1, N
|
||
|
IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
|
||
|
IF (CABS1(EK-Z(K)) .LE. REAL(ABD(M+1,K))) GO TO 60
|
||
|
S = REAL(ABD(M+1,K))/CABS1(EK-Z(K))
|
||
|
CALL CSSCAL(N,S,Z,1)
|
||
|
EK = CMPLX(S,0.0E0)*EK
|
||
|
60 CONTINUE
|
||
|
WK = EK - Z(K)
|
||
|
WKM = -EK - Z(K)
|
||
|
S = CABS1(WK)
|
||
|
SM = CABS1(WKM)
|
||
|
WK = WK/ABD(M+1,K)
|
||
|
WKM = WKM/ABD(M+1,K)
|
||
|
KP1 = K + 1
|
||
|
J2 = MIN(K+M,N)
|
||
|
I = M + 1
|
||
|
IF (KP1 .GT. J2) GO TO 100
|
||
|
DO 70 J = KP1, J2
|
||
|
I = I - 1
|
||
|
SM = SM + CABS1(Z(J)+WKM*CONJG(ABD(I,J)))
|
||
|
Z(J) = Z(J) + WK*CONJG(ABD(I,J))
|
||
|
S = S + CABS1(Z(J))
|
||
|
70 CONTINUE
|
||
|
IF (S .GE. SM) GO TO 90
|
||
|
T = WKM - WK
|
||
|
WK = WKM
|
||
|
I = M + 1
|
||
|
DO 80 J = KP1, J2
|
||
|
I = I - 1
|
||
|
Z(J) = Z(J) + T*CONJG(ABD(I,J))
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
Z(K) = WK
|
||
|
110 CONTINUE
|
||
|
S = 1.0E0/SCASUM(N,Z,1)
|
||
|
CALL CSSCAL(N,S,Z,1)
|
||
|
C
|
||
|
C SOLVE R*Y = W
|
||
|
C
|
||
|
DO 130 KB = 1, N
|
||
|
K = N + 1 - KB
|
||
|
IF (CABS1(Z(K)) .LE. REAL(ABD(M+1,K))) GO TO 120
|
||
|
S = REAL(ABD(M+1,K))/CABS1(Z(K))
|
||
|
CALL CSSCAL(N,S,Z,1)
|
||
|
120 CONTINUE
|
||
|
Z(K) = Z(K)/ABD(M+1,K)
|
||
|
LM = MIN(K-1,M)
|
||
|
LA = M + 1 - LM
|
||
|
LB = K - LM
|
||
|
T = -Z(K)
|
||
|
CALL CAXPY(LM,T,ABD(LA,K),1,Z(LB),1)
|
||
|
130 CONTINUE
|
||
|
S = 1.0E0/SCASUM(N,Z,1)
|
||
|
CALL CSSCAL(N,S,Z,1)
|
||
|
C
|
||
|
YNORM = 1.0E0
|
||
|
C
|
||
|
C SOLVE CTRANS(R)*V = Y
|
||
|
C
|
||
|
DO 150 K = 1, N
|
||
|
LM = MIN(K-1,M)
|
||
|
LA = M + 1 - LM
|
||
|
LB = K - LM
|
||
|
Z(K) = Z(K) - CDOTC(LM,ABD(LA,K),1,Z(LB),1)
|
||
|
IF (CABS1(Z(K)) .LE. REAL(ABD(M+1,K))) GO TO 140
|
||
|
S = REAL(ABD(M+1,K))/CABS1(Z(K))
|
||
|
CALL CSSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
140 CONTINUE
|
||
|
Z(K) = Z(K)/ABD(M+1,K)
|
||
|
150 CONTINUE
|
||
|
S = 1.0E0/SCASUM(N,Z,1)
|
||
|
CALL CSSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
C
|
||
|
C SOLVE R*Z = W
|
||
|
C
|
||
|
DO 170 KB = 1, N
|
||
|
K = N + 1 - KB
|
||
|
IF (CABS1(Z(K)) .LE. REAL(ABD(M+1,K))) GO TO 160
|
||
|
S = REAL(ABD(M+1,K))/CABS1(Z(K))
|
||
|
CALL CSSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
160 CONTINUE
|
||
|
Z(K) = Z(K)/ABD(M+1,K)
|
||
|
LM = MIN(K-1,M)
|
||
|
LA = M + 1 - LM
|
||
|
LB = K - LM
|
||
|
T = -Z(K)
|
||
|
CALL CAXPY(LM,T,ABD(LA,K),1,Z(LB),1)
|
||
|
170 CONTINUE
|
||
|
C MAKE ZNORM = 1.0
|
||
|
S = 1.0E0/SCASUM(N,Z,1)
|
||
|
CALL CSSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
C
|
||
|
IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
|
||
|
IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
|
||
|
180 CONTINUE
|
||
|
RETURN
|
||
|
END
|