mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
137 lines
4.3 KiB
FortranFixed
137 lines
4.3 KiB
FortranFixed
|
*DECK CPODI
|
||
|
SUBROUTINE CPODI (A, LDA, N, DET, JOB)
|
||
|
C***BEGIN PROLOGUE CPODI
|
||
|
C***PURPOSE Compute the determinant and inverse of a certain complex
|
||
|
C Hermitian positive definite matrix using the factors
|
||
|
C computed by CPOCO, CPOFA, or CQRDC.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2D1B, D3D1B
|
||
|
C***TYPE COMPLEX (SPODI-S, DPODI-D, CPODI-C)
|
||
|
C***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
|
||
|
C POSITIVE DEFINITE
|
||
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C CPODI computes the determinant and inverse of a certain
|
||
|
C complex Hermitian positive definite matrix (see below)
|
||
|
C using the factors computed by CPOCO, CPOFA or CQRDC.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C A COMPLEX(LDA, N)
|
||
|
C the output A from CPOCO or CPOFA
|
||
|
C or the output X from CQRDC.
|
||
|
C
|
||
|
C LDA INTEGER
|
||
|
C the leading dimension of the array A .
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the matrix A .
|
||
|
C
|
||
|
C JOB INTEGER
|
||
|
C = 11 both determinant and inverse.
|
||
|
C = 01 inverse only.
|
||
|
C = 10 determinant only.
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C A If CPOCO or CPOFA was used to factor A then
|
||
|
C CPODI produces the upper half of INVERSE(A) .
|
||
|
C If CQRDC was used to decompose X then
|
||
|
C CPODI produces the upper half of INVERSE(CTRANS(X)*X)
|
||
|
C where CTRANS(X) is the conjugate transpose.
|
||
|
C Elements of A below the diagonal are unchanged.
|
||
|
C If the units digit of JOB is zero, A is unchanged.
|
||
|
C
|
||
|
C DET REAL(2)
|
||
|
C determinant of A or of CTRANS(X)*X if requested.
|
||
|
C Otherwise not referenced.
|
||
|
C Determinant = DET(1) * 10.0**DET(2)
|
||
|
C with 1.0 .LE. DET(1) .LT. 10.0
|
||
|
C or DET(1) .EQ. 0.0 .
|
||
|
C
|
||
|
C Error Condition
|
||
|
C
|
||
|
C a division by zero will occur if the input factor contains
|
||
|
C a zero on the diagonal and the inverse is requested.
|
||
|
C It will not occur if the subroutines are called correctly
|
||
|
C and if CPOCO or CPOFA has set INFO .EQ. 0 .
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED CAXPY, CSCAL
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE CPODI
|
||
|
INTEGER LDA,N,JOB
|
||
|
COMPLEX A(LDA,*)
|
||
|
REAL DET(2)
|
||
|
C
|
||
|
COMPLEX T
|
||
|
REAL S
|
||
|
INTEGER I,J,JM1,K,KP1
|
||
|
C***FIRST EXECUTABLE STATEMENT CPODI
|
||
|
C
|
||
|
C COMPUTE DETERMINANT
|
||
|
C
|
||
|
IF (JOB/10 .EQ. 0) GO TO 70
|
||
|
DET(1) = 1.0E0
|
||
|
DET(2) = 0.0E0
|
||
|
S = 10.0E0
|
||
|
DO 50 I = 1, N
|
||
|
DET(1) = REAL(A(I,I))**2*DET(1)
|
||
|
IF (DET(1) .EQ. 0.0E0) GO TO 60
|
||
|
10 IF (DET(1) .GE. 1.0E0) GO TO 20
|
||
|
DET(1) = S*DET(1)
|
||
|
DET(2) = DET(2) - 1.0E0
|
||
|
GO TO 10
|
||
|
20 CONTINUE
|
||
|
30 IF (DET(1) .LT. S) GO TO 40
|
||
|
DET(1) = DET(1)/S
|
||
|
DET(2) = DET(2) + 1.0E0
|
||
|
GO TO 30
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
60 CONTINUE
|
||
|
70 CONTINUE
|
||
|
C
|
||
|
C COMPUTE INVERSE(R)
|
||
|
C
|
||
|
IF (MOD(JOB,10) .EQ. 0) GO TO 140
|
||
|
DO 100 K = 1, N
|
||
|
A(K,K) = (1.0E0,0.0E0)/A(K,K)
|
||
|
T = -A(K,K)
|
||
|
CALL CSCAL(K-1,T,A(1,K),1)
|
||
|
KP1 = K + 1
|
||
|
IF (N .LT. KP1) GO TO 90
|
||
|
DO 80 J = KP1, N
|
||
|
T = A(K,J)
|
||
|
A(K,J) = (0.0E0,0.0E0)
|
||
|
CALL CAXPY(K,T,A(1,K),1,A(1,J),1)
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
C
|
||
|
C FORM INVERSE(R) * CTRANS(INVERSE(R))
|
||
|
C
|
||
|
DO 130 J = 1, N
|
||
|
JM1 = J - 1
|
||
|
IF (JM1 .LT. 1) GO TO 120
|
||
|
DO 110 K = 1, JM1
|
||
|
T = CONJG(A(K,J))
|
||
|
CALL CAXPY(K,T,A(1,J),1,A(1,K),1)
|
||
|
110 CONTINUE
|
||
|
120 CONTINUE
|
||
|
T = CONJG(A(J,J))
|
||
|
CALL CSCAL(J,T,A(1,J),1)
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
RETURN
|
||
|
END
|