OpenLibm/slatec/cppdi.f

143 lines
4.1 KiB
FortranFixed
Raw Normal View History

*DECK CPPDI
SUBROUTINE CPPDI (AP, N, DET, JOB)
C***BEGIN PROLOGUE CPPDI
C***PURPOSE Compute the determinant and inverse of a complex Hermitian
C positive definite matrix using factors from CPPCO or CPPFA.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2D1B, D3D1B
C***TYPE COMPLEX (SPPDI-S, DPPDI-D, CPPDI-C)
C***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
C PACKED, POSITIVE DEFINITE
C***AUTHOR Moler, C. B., (U. of New Mexico)
C***DESCRIPTION
C
C CPPDI computes the determinant and inverse
C of a complex Hermitian positive definite matrix
C using the factors computed by CPPCO or CPPFA .
C
C On Entry
C
C AP COMPLEX (N*(N+1)/2)
C the output from CPPCO or CPPFA.
C
C N INTEGER
C the order of the matrix A .
C
C JOB INTEGER
C = 11 both determinant and inverse.
C = 01 inverse only.
C = 10 determinant only.
C
C On Return
C
C AP the upper triangular half of the inverse .
C The strict lower triangle is unaltered.
C
C DET REAL(2)
C determinant of original matrix if requested.
C Otherwise not referenced.
C Determinant = DET(1) * 10.0**DET(2)
C with 1.0 .LE. DET(1) .LT. 10.0
C or DET(1) .EQ. 0.0 .
C
C Error Condition
C
C A division by zero will occur if the input factor contains
C a zero on the diagonal and the inverse is requested.
C It will not occur if the subroutines are called correctly
C and if CPOCO or CPOFA has set INFO .EQ. 0 .
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED CAXPY, CSCAL
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE CPPDI
INTEGER N,JOB
COMPLEX AP(*)
REAL DET(2)
C
COMPLEX T
REAL S
INTEGER I,II,J,JJ,JM1,J1,K,KJ,KK,KP1,K1
C***FIRST EXECUTABLE STATEMENT CPPDI
C
C COMPUTE DETERMINANT
C
IF (JOB/10 .EQ. 0) GO TO 70
DET(1) = 1.0E0
DET(2) = 0.0E0
S = 10.0E0
II = 0
DO 50 I = 1, N
II = II + I
DET(1) = REAL(AP(II))**2*DET(1)
IF (DET(1) .EQ. 0.0E0) GO TO 60
10 IF (DET(1) .GE. 1.0E0) GO TO 20
DET(1) = S*DET(1)
DET(2) = DET(2) - 1.0E0
GO TO 10
20 CONTINUE
30 IF (DET(1) .LT. S) GO TO 40
DET(1) = DET(1)/S
DET(2) = DET(2) + 1.0E0
GO TO 30
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
C
C COMPUTE INVERSE(R)
C
IF (MOD(JOB,10) .EQ. 0) GO TO 140
KK = 0
DO 100 K = 1, N
K1 = KK + 1
KK = KK + K
AP(KK) = (1.0E0,0.0E0)/AP(KK)
T = -AP(KK)
CALL CSCAL(K-1,T,AP(K1),1)
KP1 = K + 1
J1 = KK + 1
KJ = KK + K
IF (N .LT. KP1) GO TO 90
DO 80 J = KP1, N
T = AP(KJ)
AP(KJ) = (0.0E0,0.0E0)
CALL CAXPY(K,T,AP(K1),1,AP(J1),1)
J1 = J1 + J
KJ = KJ + J
80 CONTINUE
90 CONTINUE
100 CONTINUE
C
C FORM INVERSE(R) * CTRANS(INVERSE(R))
C
JJ = 0
DO 130 J = 1, N
J1 = JJ + 1
JJ = JJ + J
JM1 = J - 1
K1 = 1
KJ = J1
IF (JM1 .LT. 1) GO TO 120
DO 110 K = 1, JM1
T = CONJG(AP(KJ))
CALL CAXPY(K,T,AP(J1),1,AP(K1),1)
K1 = K1 + K
KJ = KJ + 1
110 CONTINUE
120 CONTINUE
T = CONJG(AP(JJ))
CALL CSCAL(J,T,AP(J1),1)
130 CONTINUE
140 CONTINUE
RETURN
END