mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
139 lines
3.8 KiB
FortranFixed
139 lines
3.8 KiB
FortranFixed
|
*DECK CPRODP
|
||
|
SUBROUTINE CPRODP (ND, BD, NM1, BM1, NM2, BM2, NA, AA, X, YY, M,
|
||
|
+ A, B, C, D, U, Y)
|
||
|
C***BEGIN PROLOGUE CPRODP
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to BLKTRI
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE SINGLE PRECISION (CPRODP-S, CPROCP-C)
|
||
|
C***AUTHOR (UNKNOWN)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C PRODP applies a sequence of matrix operations to the vector X and
|
||
|
C stores the result in YY. (Periodic boundary conditions and COMPLEX
|
||
|
C case)
|
||
|
C
|
||
|
C BD,BM1,BM2 are arrays containing roots of certain B polynomials.
|
||
|
C ND,NM1,NM2 are the lengths of the arrays BD,BM1,BM2 respectively.
|
||
|
C AA Array containing scalar multipliers of the vector X.
|
||
|
C NA is the length of the array AA.
|
||
|
C X,YY The matrix operations are applied to X and the result is YY.
|
||
|
C A,B,C are arrays which contain the tridiagonal matrix.
|
||
|
C M is the order of the matrix.
|
||
|
C D,U,Y are working arrays.
|
||
|
C ISGN determines whether or not a change in sign is made.
|
||
|
C
|
||
|
C***SEE ALSO BLKTRI
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 801001 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900402 Added TYPE section. (WRB)
|
||
|
C***END PROLOGUE CPRODP
|
||
|
C
|
||
|
COMPLEX Y ,D ,U ,V ,
|
||
|
1 DEN ,BH ,YM ,AM ,
|
||
|
2 Y1 ,Y2 ,YH ,BD ,
|
||
|
3 CRT
|
||
|
DIMENSION A(*) ,B(*) ,C(*) ,X(*) ,
|
||
|
1 Y(*) ,D(*) ,U(*) ,BD(*) ,
|
||
|
2 BM1(*) ,BM2(*) ,AA(*) ,YY(*)
|
||
|
C***FIRST EXECUTABLE STATEMENT CPRODP
|
||
|
DO 101 J=1,M
|
||
|
Y(J) = CMPLX(X(J),0.)
|
||
|
101 CONTINUE
|
||
|
MM = M-1
|
||
|
MM2 = M-2
|
||
|
ID = ND
|
||
|
M1 = NM1
|
||
|
M2 = NM2
|
||
|
IA = NA
|
||
|
102 IFLG = 0
|
||
|
IF (ID) 111,111,103
|
||
|
103 CRT = BD(ID)
|
||
|
ID = ID-1
|
||
|
IFLG = 1
|
||
|
C
|
||
|
C BEGIN SOLUTION TO SYSTEM
|
||
|
C
|
||
|
BH = B(M)-CRT
|
||
|
YM = Y(M)
|
||
|
DEN = B(1)-CRT
|
||
|
D(1) = C(1)/DEN
|
||
|
U(1) = A(1)/DEN
|
||
|
Y(1) = Y(1)/DEN
|
||
|
V = CMPLX(C(M),0.)
|
||
|
IF (MM2-2) 106,104,104
|
||
|
104 DO 105 J=2,MM2
|
||
|
DEN = B(J)-CRT-A(J)*D(J-1)
|
||
|
D(J) = C(J)/DEN
|
||
|
U(J) = -A(J)*U(J-1)/DEN
|
||
|
Y(J) = (Y(J)-A(J)*Y(J-1))/DEN
|
||
|
BH = BH-V*U(J-1)
|
||
|
YM = YM-V*Y(J-1)
|
||
|
V = -V*D(J-1)
|
||
|
105 CONTINUE
|
||
|
106 DEN = B(M-1)-CRT-A(M-1)*D(M-2)
|
||
|
D(M-1) = (C(M-1)-A(M-1)*U(M-2))/DEN
|
||
|
Y(M-1) = (Y(M-1)-A(M-1)*Y(M-2))/DEN
|
||
|
AM = A(M)-V*D(M-2)
|
||
|
BH = BH-V*U(M-2)
|
||
|
YM = YM-V*Y(M-2)
|
||
|
DEN = BH-AM*D(M-1)
|
||
|
IF (ABS(DEN)) 107,108,107
|
||
|
107 Y(M) = (YM-AM*Y(M-1))/DEN
|
||
|
GO TO 109
|
||
|
108 Y(M) = (1.,0.)
|
||
|
109 Y(M-1) = Y(M-1)-D(M-1)*Y(M)
|
||
|
DO 110 J=2,MM
|
||
|
K = M-J
|
||
|
Y(K) = Y(K)-D(K)*Y(K+1)-U(K)*Y(M)
|
||
|
110 CONTINUE
|
||
|
111 IF (M1) 112,112,114
|
||
|
112 IF (M2) 123,123,113
|
||
|
113 RT = BM2(M2)
|
||
|
M2 = M2-1
|
||
|
GO TO 119
|
||
|
114 IF (M2) 115,115,116
|
||
|
115 RT = BM1(M1)
|
||
|
M1 = M1-1
|
||
|
GO TO 119
|
||
|
116 IF (ABS(BM1(M1))-ABS(BM2(M2))) 118,118,117
|
||
|
117 RT = BM1(M1)
|
||
|
M1 = M1-1
|
||
|
GO TO 119
|
||
|
118 RT = BM2(M2)
|
||
|
M2 = M2-1
|
||
|
C
|
||
|
C MATRIX MULTIPLICATION
|
||
|
C
|
||
|
119 YH = Y(1)
|
||
|
Y1 = (B(1)-RT)*Y(1)+C(1)*Y(2)+A(1)*Y(M)
|
||
|
IF (MM-2) 122,120,120
|
||
|
120 DO 121 J=2,MM
|
||
|
Y2 = A(J)*Y(J-1)+(B(J)-RT)*Y(J)+C(J)*Y(J+1)
|
||
|
Y(J-1) = Y1
|
||
|
Y1 = Y2
|
||
|
121 CONTINUE
|
||
|
122 Y(M) = A(M)*Y(M-1)+(B(M)-RT)*Y(M)+C(M)*YH
|
||
|
Y(M-1) = Y1
|
||
|
IFLG = 1
|
||
|
GO TO 102
|
||
|
123 IF (IA) 126,126,124
|
||
|
124 RT = AA(IA)
|
||
|
IA = IA-1
|
||
|
IFLG = 1
|
||
|
C
|
||
|
C SCALAR MULTIPLICATION
|
||
|
C
|
||
|
DO 125 J=1,M
|
||
|
Y(J) = RT*Y(J)
|
||
|
125 CONTINUE
|
||
|
126 IF (IFLG) 127,127,102
|
||
|
127 DO 128 J=1,M
|
||
|
YY(J) = REAL(Y(J))
|
||
|
128 CONTINUE
|
||
|
RETURN
|
||
|
END
|