OpenLibm/slatec/davint.f

215 lines
8.3 KiB
FortranFixed
Raw Normal View History

*DECK DAVINT
SUBROUTINE DAVINT (X, Y, N, XLO, XUP, ANS, IERR)
C***BEGIN PROLOGUE DAVINT
C***PURPOSE Integrate a function tabulated at arbitrarily spaced
C abscissas using overlapping parabolas.
C***LIBRARY SLATEC
C***CATEGORY H2A1B2
C***TYPE DOUBLE PRECISION (AVINT-S, DAVINT-D)
C***KEYWORDS INTEGRATION, QUADRATURE, TABULATED DATA
C***AUTHOR Jones, R. E., (SNLA)
C***DESCRIPTION
C
C Abstract
C DAVINT integrates a function tabulated at arbitrarily spaced
C abscissas. The limits of integration need not coincide
C with the tabulated abscissas.
C
C A method of overlapping parabolas fitted to the data is used
C provided that there are at least 3 abscissas between the
C limits of integration. DAVINT also handles two special cases.
C If the limits of integration are equal, DAVINT returns a
C result of zero regardless of the number of tabulated values.
C If there are only two function values, DAVINT uses the
C trapezoid rule.
C
C Description of Parameters
C The user must dimension all arrays appearing in the call list
C X(N), Y(N)
C
C Input--
C X - DOUBLE PRECISION array of abscissas, which must be in
C increasing order.
C Y - DOUBLE PRECISION array of function values. i.e.,
C Y(I)=FUNC(X(I))
C N - The integer number of function values supplied.
C N .GE. 2 unless XLO = XUP.
C XLO - DOUBLE PRECISION lower limit of integration
C XUP - DOUBLE PRECISION upper limit of integration. Must have
C XLO.LE.XUP
C
C Output--
C ANS - Double Precision computed approximate value of integral
C IERR - A status code
C --Normal Code
C =1 Means the requested integration was performed.
C --Abnormal Codes
C =2 Means XUP was less than XLO.
C =3 Means the number of X(I) between XLO and XUP
C (inclusive) was less than 3 and neither of the two
C special cases described in the abstract occurred.
C No integration was performed.
C =4 Means the restriction X(I+1).GT.X(I) was violated.
C =5 Means the number N of function values was .lt. 2.
C ANS is set to zero if IERR=2,3,4,or 5.
C
C DAVINT is documented completely in SC-M-69-335
C Original program from *Numerical Integration* by Davis & Rabinowitz
C Adaptation and modifications by Rondall E Jones.
C
C***REFERENCES R. E. Jones, Approximate integrator of functions
C tabulated at arbitrarily spaced abscissas,
C Report SC-M-69-335, Sandia Laboratories, 1969.
C***ROUTINES CALLED XERMSG
C***REVISION HISTORY (YYMMDD)
C 690901 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DAVINT
C
INTEGER I, IERR, INLFT, INRT, ISTART, ISTOP, N
DOUBLE PRECISION A, ANS, B, C, CA, CB, CC, FL, FR, R3, RP5,
1 SLOPE, SUM, SYL, SYL2, SYL3, SYU, SYU2, SYU3, TERM1, TERM2,
2 TERM3, X, X1, X12, X13, X2, X23, X3, XLO, XUP, Y
DIMENSION X(*),Y(*)
C BEGIN BLOCK PERMITTING ...EXITS TO 190
C BEGIN BLOCK PERMITTING ...EXITS TO 180
C***FIRST EXECUTABLE STATEMENT DAVINT
IERR = 1
ANS = 0.0D0
IF (XLO .GT. XUP) GO TO 160
IF (XLO .EQ. XUP) GO TO 150
IF (N .GE. 2) GO TO 10
IERR = 5
CALL XERMSG ('SLATEC', 'DAVINT',
+ 'LESS THAN TWO FUNCTION VALUES WERE SUPPLIED.',
+ 4, 1)
C ...............EXIT
GO TO 190
10 CONTINUE
DO 20 I = 2, N
C ............EXIT
IF (X(I) .LE. X(I-1)) GO TO 180
C ...EXIT
IF (X(I) .GT. XUP) GO TO 30
20 CONTINUE
30 CONTINUE
IF (N .GE. 3) GO TO 40
C
C SPECIAL N=2 CASE
SLOPE = (Y(2) - Y(1))/(X(2) - X(1))
FL = Y(1) + SLOPE*(XLO - X(1))
FR = Y(2) + SLOPE*(XUP - X(2))
ANS = 0.5D0*(FL + FR)*(XUP - XLO)
C ...............EXIT
GO TO 190
40 CONTINUE
IF (X(N-2) .GE. XLO) GO TO 50
IERR = 3
CALL XERMSG ('SLATEC', 'DAVINT',
+ 'THERE WERE LESS THAN THREE FUNCTION VALUES ' //
+ 'BETWEEN THE LIMITS OF INTEGRATION.', 4, 1)
C ...............EXIT
GO TO 190
50 CONTINUE
IF (X(3) .LE. XUP) GO TO 60
IERR = 3
CALL XERMSG ('SLATEC', 'DAVINT',
+ 'THERE WERE LESS THAN THREE FUNCTION VALUES ' //
+ 'BETWEEN THE LIMITS OF INTEGRATION.', 4, 1)
C ...............EXIT
GO TO 190
60 CONTINUE
I = 1
70 IF (X(I) .GE. XLO) GO TO 80
I = I + 1
GO TO 70
80 CONTINUE
INLFT = I
I = N
90 IF (X(I) .LE. XUP) GO TO 100
I = I - 1
GO TO 90
100 CONTINUE
INRT = I
IF ((INRT - INLFT) .GE. 2) GO TO 110
IERR = 3
CALL XERMSG ('SLATEC', 'DAVINT',
+ 'THERE WERE LESS THAN THREE FUNCTION VALUES ' //
+ 'BETWEEN THE LIMITS OF INTEGRATION.', 4, 1)
C ...............EXIT
GO TO 190
110 CONTINUE
ISTART = INLFT
IF (INLFT .EQ. 1) ISTART = 2
ISTOP = INRT
IF (INRT .EQ. N) ISTOP = N - 1
C
R3 = 3.0D0
RP5 = 0.5D0
SUM = 0.0D0
SYL = XLO
SYL2 = SYL*SYL
SYL3 = SYL2*SYL
C
DO 140 I = ISTART, ISTOP
X1 = X(I-1)
X2 = X(I)
X3 = X(I+1)
X12 = X1 - X2
X13 = X1 - X3
X23 = X2 - X3
TERM1 = Y(I-1)/(X12*X13)
TERM2 = -Y(I)/(X12*X23)
TERM3 = Y(I+1)/(X13*X23)
A = TERM1 + TERM2 + TERM3
B = -(X2 + X3)*TERM1 - (X1 + X3)*TERM2
1 - (X1 + X2)*TERM3
C = X2*X3*TERM1 + X1*X3*TERM2 + X1*X2*TERM3
IF (I .GT. ISTART) GO TO 120
CA = A
CB = B
CC = C
GO TO 130
120 CONTINUE
CA = 0.5D0*(A + CA)
CB = 0.5D0*(B + CB)
CC = 0.5D0*(C + CC)
130 CONTINUE
SYU = X2
SYU2 = SYU*SYU
SYU3 = SYU2*SYU
SUM = SUM + CA*(SYU3 - SYL3)/R3
1 + CB*RP5*(SYU2 - SYL2) + CC*(SYU - SYL)
CA = A
CB = B
CC = C
SYL = SYU
SYL2 = SYU2
SYL3 = SYU3
140 CONTINUE
SYU = XUP
ANS = SUM + CA*(SYU**3 - SYL3)/R3
1 + CB*RP5*(SYU**2 - SYL2) + CC*(SYU - SYL)
150 CONTINUE
GO TO 170
160 CONTINUE
IERR = 2
CALL XERMSG ('SLATEC', 'DAVINT',
+ 'THE UPPER LIMIT OF INTEGRATION WAS NOT GREATER ' //
+ 'THAN THE LOWER LIMIT.', 4, 1)
170 CONTINUE
C ......EXIT
GO TO 190
180 CONTINUE
IERR = 4
CALL XERMSG ('SLATEC', 'DAVINT',
+ 'THE ABSCISSAS WERE NOT STRICTLY INCREASING. MUST HAVE ' //
+ 'X(I-1) .LT. X(I) FOR ALL I.', 4, 1)
190 CONTINUE
RETURN
END