mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
509 lines
14 KiB
FortranFixed
509 lines
14 KiB
FortranFixed
|
*DECK DBESJ
|
||
|
SUBROUTINE DBESJ (X, ALPHA, N, Y, NZ)
|
||
|
C***BEGIN PROLOGUE DBESJ
|
||
|
C***PURPOSE Compute an N member sequence of J Bessel functions
|
||
|
C J/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
|
||
|
C and X.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY C10A3
|
||
|
C***TYPE DOUBLE PRECISION (BESJ-S, DBESJ-D)
|
||
|
C***KEYWORDS J BESSEL FUNCTION, SPECIAL FUNCTIONS
|
||
|
C***AUTHOR Amos, D. E., (SNLA)
|
||
|
C Daniel, S. L., (SNLA)
|
||
|
C Weston, M. K., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Abstract **** a double precision routine ****
|
||
|
C DBESJ computes an N member sequence of J Bessel functions
|
||
|
C J/sub(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA and X.
|
||
|
C A combination of the power series, the asymptotic expansion
|
||
|
C for X to infinity and the uniform asymptotic expansion for
|
||
|
C NU to infinity are applied over subdivisions of the (NU,X)
|
||
|
C plane. For values of (NU,X) not covered by one of these
|
||
|
C formulae, the order is incremented or decremented by integer
|
||
|
C values into a region where one of the formulae apply. Backward
|
||
|
C recursion is applied to reduce orders by integer values except
|
||
|
C where the entire sequence lies in the oscillatory region. In
|
||
|
C this case forward recursion is stable and values from the
|
||
|
C asymptotic expansion for X to infinity start the recursion
|
||
|
C when it is efficient to do so. Leading terms of the series and
|
||
|
C uniform expansion are tested for underflow. If a sequence is
|
||
|
C requested and the last member would underflow, the result is
|
||
|
C set to zero and the next lower order tried, etc., until a
|
||
|
C member comes on scale or all members are set to zero.
|
||
|
C Overflow cannot occur.
|
||
|
C
|
||
|
C The maximum number of significant digits obtainable
|
||
|
C is the smaller of 14 and the number of digits carried in
|
||
|
C double precision arithmetic.
|
||
|
C
|
||
|
C Description of Arguments
|
||
|
C
|
||
|
C Input X,ALPHA are double precision
|
||
|
C X - X .GE. 0.0D0
|
||
|
C ALPHA - order of first member of the sequence,
|
||
|
C ALPHA .GE. 0.0D0
|
||
|
C N - number of members in the sequence, N .GE. 1
|
||
|
C
|
||
|
C Output Y is double precision
|
||
|
C Y - a vector whose first N components contain
|
||
|
C values for J/sub(ALPHA+K-1)/(X), K=1,...,N
|
||
|
C NZ - number of components of Y set to zero due to
|
||
|
C underflow,
|
||
|
C NZ=0 , normal return, computation completed
|
||
|
C NZ .NE. 0, last NZ components of Y set to zero,
|
||
|
C Y(K)=0.0D0, K=N-NZ+1,...,N.
|
||
|
C
|
||
|
C Error Conditions
|
||
|
C Improper input arguments - a fatal error
|
||
|
C Underflow - a non-fatal error (NZ .NE. 0)
|
||
|
C
|
||
|
C***REFERENCES D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
|
||
|
C subroutines IBESS and JBESS for Bessel functions
|
||
|
C I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
|
||
|
C Transactions on Mathematical Software 3, (1977),
|
||
|
C pp. 76-92.
|
||
|
C F. W. J. Olver, Tables of Bessel Functions of Moderate
|
||
|
C or Large Orders, NPL Mathematical Tables 6, Her
|
||
|
C Majesty's Stationery Office, London, 1962.
|
||
|
C***ROUTINES CALLED D1MACH, DASYJY, DJAIRY, DLNGAM, I1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 750101 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890911 Removed unnecessary intrinsics. (WRB)
|
||
|
C 890911 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE DBESJ
|
||
|
EXTERNAL DJAIRY
|
||
|
INTEGER I,IALP,IDALP,IFLW,IN,INLIM,IS,I1,I2,K,KK,KM,KT,N,NN,
|
||
|
1 NS,NZ
|
||
|
INTEGER I1MACH
|
||
|
DOUBLE PRECISION AK,AKM,ALPHA,ANS,AP,ARG,COEF,DALPHA,DFN,DTM,
|
||
|
1 EARG,ELIM1,ETX,FIDAL,FLGJY,FN,FNF,FNI,FNP1,FNU,
|
||
|
2 FNULIM,GLN,PDF,PIDT,PP,RDEN,RELB,RTTP,RTWO,RTX,RZDEN,
|
||
|
3 S,SA,SB,SXO2,S1,S2,T,TA,TAU,TB,TEMP,TFN,TM,TOL,
|
||
|
4 TOLLN,TRX,TX,T1,T2,WK,X,XO2,XO2L,Y,SLIM,RTOL
|
||
|
SAVE RTWO, PDF, RTTP, PIDT, PP, INLIM, FNULIM
|
||
|
DOUBLE PRECISION D1MACH, DLNGAM
|
||
|
DIMENSION Y(*), TEMP(3), FNULIM(2), PP(4), WK(7)
|
||
|
DATA RTWO,PDF,RTTP,PIDT / 1.34839972492648D+00,
|
||
|
1 7.85398163397448D-01, 7.97884560802865D-01, 1.57079632679490D+00/
|
||
|
DATA PP(1), PP(2), PP(3), PP(4) / 8.72909153935547D+00,
|
||
|
1 2.65693932265030D-01, 1.24578576865586D-01, 7.70133747430388D-04/
|
||
|
DATA INLIM / 150 /
|
||
|
DATA FNULIM(1), FNULIM(2) / 100.0D0, 60.0D0 /
|
||
|
C***FIRST EXECUTABLE STATEMENT DBESJ
|
||
|
NZ = 0
|
||
|
KT = 1
|
||
|
NS=0
|
||
|
C I1MACH(14) REPLACES I1MACH(11) IN A DOUBLE PRECISION CODE
|
||
|
C I1MACH(15) REPLACES I1MACH(12) IN A DOUBLE PRECISION CODE
|
||
|
TA = D1MACH(3)
|
||
|
TOL = MAX(TA,1.0D-15)
|
||
|
I1 = I1MACH(14) + 1
|
||
|
I2 = I1MACH(15)
|
||
|
TB = D1MACH(5)
|
||
|
ELIM1 = -2.303D0*(I2*TB+3.0D0)
|
||
|
RTOL=1.0D0/TOL
|
||
|
SLIM=D1MACH(1)*RTOL*1.0D+3
|
||
|
C TOLLN = -LN(TOL)
|
||
|
TOLLN = 2.303D0*TB*I1
|
||
|
TOLLN = MIN(TOLLN,34.5388D0)
|
||
|
IF (N-1) 720, 10, 20
|
||
|
10 KT = 2
|
||
|
20 NN = N
|
||
|
IF (X) 730, 30, 80
|
||
|
30 IF (ALPHA) 710, 40, 50
|
||
|
40 Y(1) = 1.0D0
|
||
|
IF (N.EQ.1) RETURN
|
||
|
I1 = 2
|
||
|
GO TO 60
|
||
|
50 I1 = 1
|
||
|
60 DO 70 I=I1,N
|
||
|
Y(I) = 0.0D0
|
||
|
70 CONTINUE
|
||
|
RETURN
|
||
|
80 CONTINUE
|
||
|
IF (ALPHA.LT.0.0D0) GO TO 710
|
||
|
C
|
||
|
IALP = INT(ALPHA)
|
||
|
FNI = IALP + N - 1
|
||
|
FNF = ALPHA - IALP
|
||
|
DFN = FNI + FNF
|
||
|
FNU = DFN
|
||
|
XO2 = X*0.5D0
|
||
|
SXO2 = XO2*XO2
|
||
|
C
|
||
|
C DECISION TREE FOR REGION WHERE SERIES, ASYMPTOTIC EXPANSION FOR X
|
||
|
C TO INFINITY AND ASYMPTOTIC EXPANSION FOR NU TO INFINITY ARE
|
||
|
C APPLIED.
|
||
|
C
|
||
|
IF (SXO2.LE.(FNU+1.0D0)) GO TO 90
|
||
|
TA = MAX(20.0D0,FNU)
|
||
|
IF (X.GT.TA) GO TO 120
|
||
|
IF (X.GT.12.0D0) GO TO 110
|
||
|
XO2L = LOG(XO2)
|
||
|
NS = INT(SXO2-FNU) + 1
|
||
|
GO TO 100
|
||
|
90 FN = FNU
|
||
|
FNP1 = FN + 1.0D0
|
||
|
XO2L = LOG(XO2)
|
||
|
IS = KT
|
||
|
IF (X.LE.0.50D0) GO TO 330
|
||
|
NS = 0
|
||
|
100 FNI = FNI + NS
|
||
|
DFN = FNI + FNF
|
||
|
FN = DFN
|
||
|
FNP1 = FN + 1.0D0
|
||
|
IS = KT
|
||
|
IF (N-1+NS.GT.0) IS = 3
|
||
|
GO TO 330
|
||
|
110 ANS = MAX(36.0D0-FNU,0.0D0)
|
||
|
NS = INT(ANS)
|
||
|
FNI = FNI + NS
|
||
|
DFN = FNI + FNF
|
||
|
FN = DFN
|
||
|
IS = KT
|
||
|
IF (N-1+NS.GT.0) IS = 3
|
||
|
GO TO 130
|
||
|
120 CONTINUE
|
||
|
RTX = SQRT(X)
|
||
|
TAU = RTWO*RTX
|
||
|
TA = TAU + FNULIM(KT)
|
||
|
IF (FNU.LE.TA) GO TO 480
|
||
|
FN = FNU
|
||
|
IS = KT
|
||
|
C
|
||
|
C UNIFORM ASYMPTOTIC EXPANSION FOR NU TO INFINITY
|
||
|
C
|
||
|
130 CONTINUE
|
||
|
I1 = ABS(3-IS)
|
||
|
I1 = MAX(I1,1)
|
||
|
FLGJY = 1.0D0
|
||
|
CALL DASYJY(DJAIRY,X,FN,FLGJY,I1,TEMP(IS),WK,IFLW)
|
||
|
IF(IFLW.NE.0) GO TO 380
|
||
|
GO TO (320, 450, 620), IS
|
||
|
310 TEMP(1) = TEMP(3)
|
||
|
KT = 1
|
||
|
320 IS = 2
|
||
|
FNI = FNI - 1.0D0
|
||
|
DFN = FNI + FNF
|
||
|
FN = DFN
|
||
|
IF(I1.EQ.2) GO TO 450
|
||
|
GO TO 130
|
||
|
C
|
||
|
C SERIES FOR (X/2)**2.LE.NU+1
|
||
|
C
|
||
|
330 CONTINUE
|
||
|
GLN = DLNGAM(FNP1)
|
||
|
ARG = FN*XO2L - GLN
|
||
|
IF (ARG.LT.(-ELIM1)) GO TO 400
|
||
|
EARG = EXP(ARG)
|
||
|
340 CONTINUE
|
||
|
S = 1.0D0
|
||
|
IF (X.LT.TOL) GO TO 360
|
||
|
AK = 3.0D0
|
||
|
T2 = 1.0D0
|
||
|
T = 1.0D0
|
||
|
S1 = FN
|
||
|
DO 350 K=1,17
|
||
|
S2 = T2 + S1
|
||
|
T = -T*SXO2/S2
|
||
|
S = S + T
|
||
|
IF (ABS(T).LT.TOL) GO TO 360
|
||
|
T2 = T2 + AK
|
||
|
AK = AK + 2.0D0
|
||
|
S1 = S1 + FN
|
||
|
350 CONTINUE
|
||
|
360 CONTINUE
|
||
|
TEMP(IS) = S*EARG
|
||
|
GO TO (370, 450, 610), IS
|
||
|
370 EARG = EARG*FN/XO2
|
||
|
FNI = FNI - 1.0D0
|
||
|
DFN = FNI + FNF
|
||
|
FN = DFN
|
||
|
IS = 2
|
||
|
GO TO 340
|
||
|
C
|
||
|
C SET UNDERFLOW VALUE AND UPDATE PARAMETERS
|
||
|
C UNDERFLOW CAN ONLY OCCUR FOR NS=0 SINCE THE ORDER MUST BE LARGER
|
||
|
C THAN 36. THEREFORE, NS NEE NOT BE TESTED.
|
||
|
C
|
||
|
380 Y(NN) = 0.0D0
|
||
|
NN = NN - 1
|
||
|
FNI = FNI - 1.0D0
|
||
|
DFN = FNI + FNF
|
||
|
FN = DFN
|
||
|
IF (NN-1) 440, 390, 130
|
||
|
390 KT = 2
|
||
|
IS = 2
|
||
|
GO TO 130
|
||
|
400 Y(NN) = 0.0D0
|
||
|
NN = NN - 1
|
||
|
FNP1 = FN
|
||
|
FNI = FNI - 1.0D0
|
||
|
DFN = FNI + FNF
|
||
|
FN = DFN
|
||
|
IF (NN-1) 440, 410, 420
|
||
|
410 KT = 2
|
||
|
IS = 2
|
||
|
420 IF (SXO2.LE.FNP1) GO TO 430
|
||
|
GO TO 130
|
||
|
430 ARG = ARG - XO2L + LOG(FNP1)
|
||
|
IF (ARG.LT.(-ELIM1)) GO TO 400
|
||
|
GO TO 330
|
||
|
440 NZ = N - NN
|
||
|
RETURN
|
||
|
C
|
||
|
C BACKWARD RECURSION SECTION
|
||
|
C
|
||
|
450 CONTINUE
|
||
|
IF(NS.NE.0) GO TO 451
|
||
|
NZ = N - NN
|
||
|
IF (KT.EQ.2) GO TO 470
|
||
|
C BACKWARD RECUR FROM INDEX ALPHA+NN-1 TO ALPHA
|
||
|
Y(NN) = TEMP(1)
|
||
|
Y(NN-1) = TEMP(2)
|
||
|
IF (NN.EQ.2) RETURN
|
||
|
451 CONTINUE
|
||
|
TRX = 2.0D0/X
|
||
|
DTM = FNI
|
||
|
TM = (DTM+FNF)*TRX
|
||
|
AK=1.0D0
|
||
|
TA=TEMP(1)
|
||
|
TB=TEMP(2)
|
||
|
IF(ABS(TA).GT.SLIM) GO TO 455
|
||
|
TA=TA*RTOL
|
||
|
TB=TB*RTOL
|
||
|
AK=TOL
|
||
|
455 CONTINUE
|
||
|
KK=2
|
||
|
IN=NS-1
|
||
|
IF(IN.EQ.0) GO TO 690
|
||
|
IF(NS.NE.0) GO TO 670
|
||
|
K=NN-2
|
||
|
DO 460 I=3,NN
|
||
|
S=TB
|
||
|
TB = TM*TB - TA
|
||
|
TA=S
|
||
|
Y(K)=TB*AK
|
||
|
DTM = DTM - 1.0D0
|
||
|
TM = (DTM+FNF)*TRX
|
||
|
K = K - 1
|
||
|
460 CONTINUE
|
||
|
RETURN
|
||
|
470 Y(1) = TEMP(2)
|
||
|
RETURN
|
||
|
C
|
||
|
C ASYMPTOTIC EXPANSION FOR X TO INFINITY WITH FORWARD RECURSION IN
|
||
|
C OSCILLATORY REGION X.GT.MAX(20, NU), PROVIDED THE LAST MEMBER
|
||
|
C OF THE SEQUENCE IS ALSO IN THE REGION.
|
||
|
C
|
||
|
480 CONTINUE
|
||
|
IN = INT(ALPHA-TAU+2.0D0)
|
||
|
IF (IN.LE.0) GO TO 490
|
||
|
IDALP = IALP - IN - 1
|
||
|
KT = 1
|
||
|
GO TO 500
|
||
|
490 CONTINUE
|
||
|
IDALP = IALP
|
||
|
IN = 0
|
||
|
500 IS = KT
|
||
|
FIDAL = IDALP
|
||
|
DALPHA = FIDAL + FNF
|
||
|
ARG = X - PIDT*DALPHA - PDF
|
||
|
SA = SIN(ARG)
|
||
|
SB = COS(ARG)
|
||
|
COEF = RTTP/RTX
|
||
|
ETX = 8.0D0*X
|
||
|
510 CONTINUE
|
||
|
DTM = FIDAL + FIDAL
|
||
|
DTM = DTM*DTM
|
||
|
TM = 0.0D0
|
||
|
IF (FIDAL.EQ.0.0D0 .AND. ABS(FNF).LT.TOL) GO TO 520
|
||
|
TM = 4.0D0*FNF*(FIDAL+FIDAL+FNF)
|
||
|
520 CONTINUE
|
||
|
TRX = DTM - 1.0D0
|
||
|
T2 = (TRX+TM)/ETX
|
||
|
S2 = T2
|
||
|
RELB = TOL*ABS(T2)
|
||
|
T1 = ETX
|
||
|
S1 = 1.0D0
|
||
|
FN = 1.0D0
|
||
|
AK = 8.0D0
|
||
|
DO 530 K=1,13
|
||
|
T1 = T1 + ETX
|
||
|
FN = FN + AK
|
||
|
TRX = DTM - FN
|
||
|
AP = TRX + TM
|
||
|
T2 = -T2*AP/T1
|
||
|
S1 = S1 + T2
|
||
|
T1 = T1 + ETX
|
||
|
AK = AK + 8.0D0
|
||
|
FN = FN + AK
|
||
|
TRX = DTM - FN
|
||
|
AP = TRX + TM
|
||
|
T2 = T2*AP/T1
|
||
|
S2 = S2 + T2
|
||
|
IF (ABS(T2).LE.RELB) GO TO 540
|
||
|
AK = AK + 8.0D0
|
||
|
530 CONTINUE
|
||
|
540 TEMP(IS) = COEF*(S1*SB-S2*SA)
|
||
|
IF(IS.EQ.2) GO TO 560
|
||
|
FIDAL = FIDAL + 1.0D0
|
||
|
DALPHA = FIDAL + FNF
|
||
|
IS = 2
|
||
|
TB = SA
|
||
|
SA = -SB
|
||
|
SB = TB
|
||
|
GO TO 510
|
||
|
C
|
||
|
C FORWARD RECURSION SECTION
|
||
|
C
|
||
|
560 IF (KT.EQ.2) GO TO 470
|
||
|
S1 = TEMP(1)
|
||
|
S2 = TEMP(2)
|
||
|
TX = 2.0D0/X
|
||
|
TM = DALPHA*TX
|
||
|
IF (IN.EQ.0) GO TO 580
|
||
|
C
|
||
|
C FORWARD RECUR TO INDEX ALPHA
|
||
|
C
|
||
|
DO 570 I=1,IN
|
||
|
S = S2
|
||
|
S2 = TM*S2 - S1
|
||
|
TM = TM + TX
|
||
|
S1 = S
|
||
|
570 CONTINUE
|
||
|
IF (NN.EQ.1) GO TO 600
|
||
|
S = S2
|
||
|
S2 = TM*S2 - S1
|
||
|
TM = TM + TX
|
||
|
S1 = S
|
||
|
580 CONTINUE
|
||
|
C
|
||
|
C FORWARD RECUR FROM INDEX ALPHA TO ALPHA+N-1
|
||
|
C
|
||
|
Y(1) = S1
|
||
|
Y(2) = S2
|
||
|
IF (NN.EQ.2) RETURN
|
||
|
DO 590 I=3,NN
|
||
|
Y(I) = TM*Y(I-1) - Y(I-2)
|
||
|
TM = TM + TX
|
||
|
590 CONTINUE
|
||
|
RETURN
|
||
|
600 Y(1) = S2
|
||
|
RETURN
|
||
|
C
|
||
|
C BACKWARD RECURSION WITH NORMALIZATION BY
|
||
|
C ASYMPTOTIC EXPANSION FOR NU TO INFINITY OR POWER SERIES.
|
||
|
C
|
||
|
610 CONTINUE
|
||
|
C COMPUTATION OF LAST ORDER FOR SERIES NORMALIZATION
|
||
|
AKM = MAX(3.0D0-FN,0.0D0)
|
||
|
KM = INT(AKM)
|
||
|
TFN = FN + KM
|
||
|
TA = (GLN+TFN-0.9189385332D0-0.0833333333D0/TFN)/(TFN+0.5D0)
|
||
|
TA = XO2L - TA
|
||
|
TB = -(1.0D0-1.5D0/TFN)/TFN
|
||
|
AKM = TOLLN/(-TA+SQRT(TA*TA-TOLLN*TB)) + 1.5D0
|
||
|
IN = KM + INT(AKM)
|
||
|
GO TO 660
|
||
|
620 CONTINUE
|
||
|
C COMPUTATION OF LAST ORDER FOR ASYMPTOTIC EXPANSION NORMALIZATION
|
||
|
GLN = WK(3) + WK(2)
|
||
|
IF (WK(6).GT.30.0D0) GO TO 640
|
||
|
RDEN = (PP(4)*WK(6)+PP(3))*WK(6) + 1.0D0
|
||
|
RZDEN = PP(1) + PP(2)*WK(6)
|
||
|
TA = RZDEN/RDEN
|
||
|
IF (WK(1).LT.0.10D0) GO TO 630
|
||
|
TB = GLN/WK(5)
|
||
|
GO TO 650
|
||
|
630 TB=(1.259921049D0+(0.1679894730D0+0.0887944358D0*WK(1))*WK(1))
|
||
|
1 /WK(7)
|
||
|
GO TO 650
|
||
|
640 CONTINUE
|
||
|
TA = 0.5D0*TOLLN/WK(4)
|
||
|
TA=((0.0493827160D0*TA-0.1111111111D0)*TA+0.6666666667D0)*TA*WK(6)
|
||
|
IF (WK(1).LT.0.10D0) GO TO 630
|
||
|
TB = GLN/WK(5)
|
||
|
650 IN = INT(TA/TB+1.5D0)
|
||
|
IF (IN.GT.INLIM) GO TO 310
|
||
|
660 CONTINUE
|
||
|
DTM = FNI + IN
|
||
|
TRX = 2.0D0/X
|
||
|
TM = (DTM+FNF)*TRX
|
||
|
TA = 0.0D0
|
||
|
TB = TOL
|
||
|
KK = 1
|
||
|
AK=1.0D0
|
||
|
670 CONTINUE
|
||
|
C
|
||
|
C BACKWARD RECUR UNINDEXED
|
||
|
C
|
||
|
DO 680 I=1,IN
|
||
|
S = TB
|
||
|
TB = TM*TB - TA
|
||
|
TA = S
|
||
|
DTM = DTM - 1.0D0
|
||
|
TM = (DTM+FNF)*TRX
|
||
|
680 CONTINUE
|
||
|
C NORMALIZATION
|
||
|
IF (KK.NE.1) GO TO 690
|
||
|
S=TEMP(3)
|
||
|
SA=TA/TB
|
||
|
TA=S
|
||
|
TB=S
|
||
|
IF(ABS(S).GT.SLIM) GO TO 685
|
||
|
TA=TA*RTOL
|
||
|
TB=TB*RTOL
|
||
|
AK=TOL
|
||
|
685 CONTINUE
|
||
|
TA=TA*SA
|
||
|
KK = 2
|
||
|
IN = NS
|
||
|
IF (NS.NE.0) GO TO 670
|
||
|
690 Y(NN) = TB*AK
|
||
|
NZ = N - NN
|
||
|
IF (NN.EQ.1) RETURN
|
||
|
K = NN - 1
|
||
|
S=TB
|
||
|
TB = TM*TB - TA
|
||
|
TA=S
|
||
|
Y(K)=TB*AK
|
||
|
IF (NN.EQ.2) RETURN
|
||
|
DTM = DTM - 1.0D0
|
||
|
TM = (DTM+FNF)*TRX
|
||
|
K=NN-2
|
||
|
C
|
||
|
C BACKWARD RECUR INDEXED
|
||
|
C
|
||
|
DO 700 I=3,NN
|
||
|
S=TB
|
||
|
TB = TM*TB - TA
|
||
|
TA=S
|
||
|
Y(K)=TB*AK
|
||
|
DTM = DTM - 1.0D0
|
||
|
TM = (DTM+FNF)*TRX
|
||
|
K = K - 1
|
||
|
700 CONTINUE
|
||
|
RETURN
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
710 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DBESJ', 'ORDER, ALPHA, LESS THAN ZERO.',
|
||
|
+ 2, 1)
|
||
|
RETURN
|
||
|
720 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DBESJ', 'N LESS THAN ONE.', 2, 1)
|
||
|
RETURN
|
||
|
730 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DBESJ', 'X LESS THAN ZERO.', 2, 1)
|
||
|
RETURN
|
||
|
END
|