OpenLibm/slatec/dbesk.f

281 lines
8.7 KiB
FortranFixed
Raw Normal View History

*DECK DBESK
SUBROUTINE DBESK (X, FNU, KODE, N, Y, NZ)
C***BEGIN PROLOGUE DBESK
C***PURPOSE Implement forward recursion on the three term recursion
C relation for a sequence of non-negative order Bessel
C functions K/SUB(FNU+I-1)/(X), or scaled Bessel functions
C EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
C X and non-negative orders FNU.
C***LIBRARY SLATEC
C***CATEGORY C10B3
C***TYPE DOUBLE PRECISION (BESK-S, DBESK-D)
C***KEYWORDS K BESSEL FUNCTION, SPECIAL FUNCTIONS
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C Abstract **** a double precision routine ****
C DBESK implements forward recursion on the three term
C recursion relation for a sequence of non-negative order Bessel
C functions K/sub(FNU+I-1)/(X), or scaled Bessel functions
C EXP(X)*K/sub(FNU+I-1)/(X), I=1,..,N for real X .GT. 0.0D0 and
C non-negative orders FNU. If FNU .LT. NULIM, orders FNU and
C FNU+1 are obtained from DBSKNU to start the recursion. If
C FNU .GE. NULIM, the uniform asymptotic expansion is used for
C orders FNU and FNU+1 to start the recursion. NULIM is 35 or
C 70 depending on whether N=1 or N .GE. 2. Under and overflow
C tests are made on the leading term of the asymptotic expansion
C before any extensive computation is done.
C
C The maximum number of significant digits obtainable
C is the smaller of 14 and the number of digits carried in
C double precision arithmetic.
C
C Description of Arguments
C
C Input X,FNU are double precision
C X - X .GT. 0.0D0
C FNU - order of the initial K function, FNU .GE. 0.0D0
C KODE - a parameter to indicate the scaling option
C KODE=1 returns Y(I)= K/sub(FNU+I-1)/(X),
C I=1,...,N
C KODE=2 returns Y(I)=EXP(X)*K/sub(FNU+I-1)/(X),
C I=1,...,N
C N - number of members in the sequence, N .GE. 1
C
C Output Y is double precision
C Y - a vector whose first N components contain values
C for the sequence
C Y(I)= k/sub(FNU+I-1)/(X), I=1,...,N or
C Y(I)=EXP(X)*K/sub(FNU+I-1)/(X), I=1,...,N
C depending on KODE
C NZ - number of components of Y set to zero due to
C underflow with KODE=1,
C NZ=0 , normal return, computation completed
C NZ .NE. 0, first NZ components of Y set to zero
C due to underflow, Y(I)=0.0D0, I=1,...,NZ
C
C Error Conditions
C Improper input arguments - a fatal error
C Overflow - a fatal error
C Underflow with KODE=1 - a non-fatal error (NZ .NE. 0)
C
C***REFERENCES F. W. J. Olver, Tables of Bessel Functions of Moderate
C or Large Orders, NPL Mathematical Tables 6, Her
C Majesty's Stationery Office, London, 1962.
C N. M. Temme, On the numerical evaluation of the modified
C Bessel function of the third kind, Journal of
C Computational Physics 19, (1975), pp. 324-337.
C***ROUTINES CALLED D1MACH, DASYIK, DBESK0, DBESK1, DBSK0E, DBSK1E,
C DBSKNU, I1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 790201 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890911 Removed unnecessary intrinsics. (WRB)
C 890911 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DBESK
C
INTEGER I, J, K, KODE, MZ, N, NB, ND, NN, NUD, NULIM, NZ
INTEGER I1MACH
DOUBLE PRECISION CN,DNU,ELIM,ETX,FLGIK,FN,FNN,FNU,GLN,GNU,RTZ,
1 S, S1, S2, T, TM, TRX, W, X, XLIM, Y, ZN
DOUBLE PRECISION DBESK0, DBESK1, DBSK1E, DBSK0E, D1MACH
DIMENSION W(2), NULIM(2), Y(*)
SAVE NULIM
DATA NULIM(1),NULIM(2) / 35 , 70 /
C***FIRST EXECUTABLE STATEMENT DBESK
NN = -I1MACH(15)
ELIM = 2.303D0*(NN*D1MACH(5)-3.0D0)
XLIM = D1MACH(1)*1.0D+3
IF (KODE.LT.1 .OR. KODE.GT.2) GO TO 280
IF (FNU.LT.0.0D0) GO TO 290
IF (X.LE.0.0D0) GO TO 300
IF (X.LT.XLIM) GO TO 320
IF (N.LT.1) GO TO 310
ETX = KODE - 1
C
C ND IS A DUMMY VARIABLE FOR N
C GNU IS A DUMMY VARIABLE FOR FNU
C NZ = NUMBER OF UNDERFLOWS ON KODE=1
C
ND = N
NZ = 0
NUD = INT(FNU)
DNU = FNU - NUD
GNU = FNU
NN = MIN(2,ND)
FN = FNU + N - 1
FNN = FN
IF (FN.LT.2.0D0) GO TO 150
C
C OVERFLOW TEST (LEADING EXPONENTIAL OF ASYMPTOTIC EXPANSION)
C FOR THE LAST ORDER, FNU+N-1.GE.NULIM
C
ZN = X/FN
IF (ZN.EQ.0.0D0) GO TO 320
RTZ = SQRT(1.0D0+ZN*ZN)
GLN = LOG((1.0D0+RTZ)/ZN)
T = RTZ*(1.0D0-ETX) + ETX/(ZN+RTZ)
CN = -FN*(T-GLN)
IF (CN.GT.ELIM) GO TO 320
IF (NUD.LT.NULIM(NN)) GO TO 30
IF (NN.EQ.1) GO TO 20
10 CONTINUE
C
C UNDERFLOW TEST (LEADING EXPONENTIAL OF ASYMPTOTIC EXPANSION)
C FOR THE FIRST ORDER, FNU.GE.NULIM
C
FN = GNU
ZN = X/FN
RTZ = SQRT(1.0D0+ZN*ZN)
GLN = LOG((1.0D0+RTZ)/ZN)
T = RTZ*(1.0D0-ETX) + ETX/(ZN+RTZ)
CN = -FN*(T-GLN)
20 CONTINUE
IF (CN.LT.-ELIM) GO TO 230
C
C ASYMPTOTIC EXPANSION FOR ORDERS FNU AND FNU+1.GE.NULIM
C
FLGIK = -1.0D0
CALL DASYIK(X,GNU,KODE,FLGIK,RTZ,CN,NN,Y)
IF (NN.EQ.1) GO TO 240
TRX = 2.0D0/X
TM = (GNU+GNU+2.0D0)/X
GO TO 130
C
30 CONTINUE
IF (KODE.EQ.2) GO TO 40
C
C UNDERFLOW TEST (LEADING EXPONENTIAL OF ASYMPTOTIC EXPANSION IN X)
C FOR ORDER DNU
C
IF (X.GT.ELIM) GO TO 230
40 CONTINUE
IF (DNU.NE.0.0D0) GO TO 80
IF (KODE.EQ.2) GO TO 50
S1 = DBESK0(X)
GO TO 60
50 S1 = DBSK0E(X)
60 CONTINUE
IF (NUD.EQ.0 .AND. ND.EQ.1) GO TO 120
IF (KODE.EQ.2) GO TO 70
S2 = DBESK1(X)
GO TO 90
70 S2 = DBSK1E(X)
GO TO 90
80 CONTINUE
NB = 2
IF (NUD.EQ.0 .AND. ND.EQ.1) NB = 1
CALL DBSKNU(X, DNU, KODE, NB, W, NZ)
S1 = W(1)
IF (NB.EQ.1) GO TO 120
S2 = W(2)
90 CONTINUE
TRX = 2.0D0/X
TM = (DNU+DNU+2.0D0)/X
C FORWARD RECUR FROM DNU TO FNU+1 TO GET Y(1) AND Y(2)
IF (ND.EQ.1) NUD = NUD - 1
IF (NUD.GT.0) GO TO 100
IF (ND.GT.1) GO TO 120
S1 = S2
GO TO 120
100 CONTINUE
DO 110 I=1,NUD
S = S2
S2 = TM*S2 + S1
S1 = S
TM = TM + TRX
110 CONTINUE
IF (ND.EQ.1) S1 = S2
120 CONTINUE
Y(1) = S1
IF (ND.EQ.1) GO TO 240
Y(2) = S2
130 CONTINUE
IF (ND.EQ.2) GO TO 240
C FORWARD RECUR FROM FNU+2 TO FNU+N-1
DO 140 I=3,ND
Y(I) = TM*Y(I-1) + Y(I-2)
TM = TM + TRX
140 CONTINUE
GO TO 240
C
150 CONTINUE
C UNDERFLOW TEST FOR KODE=1
IF (KODE.EQ.2) GO TO 160
IF (X.GT.ELIM) GO TO 230
160 CONTINUE
C OVERFLOW TEST
IF (FN.LE.1.0D0) GO TO 170
IF (-FN*(LOG(X)-0.693D0).GT.ELIM) GO TO 320
170 CONTINUE
IF (DNU.EQ.0.0D0) GO TO 180
CALL DBSKNU(X, FNU, KODE, ND, Y, MZ)
GO TO 240
180 CONTINUE
J = NUD
IF (J.EQ.1) GO TO 210
J = J + 1
IF (KODE.EQ.2) GO TO 190
Y(J) = DBESK0(X)
GO TO 200
190 Y(J) = DBSK0E(X)
200 IF (ND.EQ.1) GO TO 240
J = J + 1
210 IF (KODE.EQ.2) GO TO 220
Y(J) = DBESK1(X)
GO TO 240
220 Y(J) = DBSK1E(X)
GO TO 240
C
C UPDATE PARAMETERS ON UNDERFLOW
C
230 CONTINUE
NUD = NUD + 1
ND = ND - 1
IF (ND.EQ.0) GO TO 240
NN = MIN(2,ND)
GNU = GNU + 1.0D0
IF (FNN.LT.2.0D0) GO TO 230
IF (NUD.LT.NULIM(NN)) GO TO 230
GO TO 10
240 CONTINUE
NZ = N - ND
IF (NZ.EQ.0) RETURN
IF (ND.EQ.0) GO TO 260
DO 250 I=1,ND
J = N - I + 1
K = ND - I + 1
Y(J) = Y(K)
250 CONTINUE
260 CONTINUE
DO 270 I=1,NZ
Y(I) = 0.0D0
270 CONTINUE
RETURN
C
C
C
280 CONTINUE
CALL XERMSG ('SLATEC', 'DBESK',
+ 'SCALING OPTION, KODE, NOT 1 OR 2', 2, 1)
RETURN
290 CONTINUE
CALL XERMSG ('SLATEC', 'DBESK', 'ORDER, FNU, LESS THAN ZERO', 2,
+ 1)
RETURN
300 CONTINUE
CALL XERMSG ('SLATEC', 'DBESK', 'X LESS THAN OR EQUAL TO ZERO',
+ 2, 1)
RETURN
310 CONTINUE
CALL XERMSG ('SLATEC', 'DBESK', 'N LESS THAN ONE', 2, 1)
RETURN
320 CONTINUE
CALL XERMSG ('SLATEC', 'DBESK',
+ 'OVERFLOW, FNU OR N TOO LARGE OR X TOO SMALL', 6, 1)
RETURN
END