mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
204 lines
6.3 KiB
FortranFixed
204 lines
6.3 KiB
FortranFixed
|
*DECK DBESY
|
||
|
SUBROUTINE DBESY (X, FNU, N, Y)
|
||
|
C***BEGIN PROLOGUE DBESY
|
||
|
C***PURPOSE Implement forward recursion on the three term recursion
|
||
|
C relation for a sequence of non-negative order Bessel
|
||
|
C functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
|
||
|
C X and non-negative orders FNU.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY C10A3
|
||
|
C***TYPE DOUBLE PRECISION (BESY-S, DBESY-D)
|
||
|
C***KEYWORDS SPECIAL FUNCTIONS, Y BESSEL FUNCTION
|
||
|
C***AUTHOR Amos, D. E., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Abstract **** a double precision routine ****
|
||
|
C DBESY implements forward recursion on the three term
|
||
|
C recursion relation for a sequence of non-negative order Bessel
|
||
|
C functions Y/sub(FNU+I-1)/(X), I=1,N for real X .GT. 0.0D0 and
|
||
|
C non-negative orders FNU. If FNU .LT. NULIM, orders FNU and
|
||
|
C FNU+1 are obtained from DBSYNU which computes by a power
|
||
|
C series for X .LE. 2, the K Bessel function of an imaginary
|
||
|
C argument for 2 .LT. X .LE. 20 and the asymptotic expansion for
|
||
|
C X .GT. 20.
|
||
|
C
|
||
|
C If FNU .GE. NULIM, the uniform asymptotic expansion is coded
|
||
|
C in DASYJY for orders FNU and FNU+1 to start the recursion.
|
||
|
C NULIM is 70 or 100 depending on whether N=1 or N .GE. 2. An
|
||
|
C overflow test is made on the leading term of the asymptotic
|
||
|
C expansion before any extensive computation is done.
|
||
|
C
|
||
|
C The maximum number of significant digits obtainable
|
||
|
C is the smaller of 14 and the number of digits carried in
|
||
|
C double precision arithmetic.
|
||
|
C
|
||
|
C Description of Arguments
|
||
|
C
|
||
|
C Input
|
||
|
C X - X .GT. 0.0D0
|
||
|
C FNU - order of the initial Y function, FNU .GE. 0.0D0
|
||
|
C N - number of members in the sequence, N .GE. 1
|
||
|
C
|
||
|
C Output
|
||
|
C Y - a vector whose first N components contain values
|
||
|
C for the sequence Y(I)=Y/sub(FNU+I-1)/(X), I=1,N.
|
||
|
C
|
||
|
C Error Conditions
|
||
|
C Improper input arguments - a fatal error
|
||
|
C Overflow - a fatal error
|
||
|
C
|
||
|
C***REFERENCES F. W. J. Olver, Tables of Bessel Functions of Moderate
|
||
|
C or Large Orders, NPL Mathematical Tables 6, Her
|
||
|
C Majesty's Stationery Office, London, 1962.
|
||
|
C N. M. Temme, On the numerical evaluation of the modified
|
||
|
C Bessel function of the third kind, Journal of
|
||
|
C Computational Physics 19, (1975), pp. 324-337.
|
||
|
C N. M. Temme, On the numerical evaluation of the ordinary
|
||
|
C Bessel function of the second kind, Journal of
|
||
|
C Computational Physics 21, (1976), pp. 343-350.
|
||
|
C***ROUTINES CALLED D1MACH, DASYJY, DBESY0, DBESY1, DBSYNU, DYAIRY,
|
||
|
C I1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800501 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890911 Removed unnecessary intrinsics. (WRB)
|
||
|
C 890911 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE DBESY
|
||
|
C
|
||
|
EXTERNAL DYAIRY
|
||
|
INTEGER I, IFLW, J, N, NB, ND, NN, NUD, NULIM
|
||
|
INTEGER I1MACH
|
||
|
DOUBLE PRECISION AZN,CN,DNU,ELIM,FLGJY,FN,FNU,RAN,S,S1,S2,TM,TRX,
|
||
|
1 W,WK,W2N,X,XLIM,XXN,Y
|
||
|
DOUBLE PRECISION DBESY0, DBESY1, D1MACH
|
||
|
DIMENSION W(2), NULIM(2), Y(*), WK(7)
|
||
|
SAVE NULIM
|
||
|
DATA NULIM(1),NULIM(2) / 70 , 100 /
|
||
|
C***FIRST EXECUTABLE STATEMENT DBESY
|
||
|
NN = -I1MACH(15)
|
||
|
ELIM = 2.303D0*(NN*D1MACH(5)-3.0D0)
|
||
|
XLIM = D1MACH(1)*1.0D+3
|
||
|
IF (FNU.LT.0.0D0) GO TO 140
|
||
|
IF (X.LE.0.0D0) GO TO 150
|
||
|
IF (X.LT.XLIM) GO TO 170
|
||
|
IF (N.LT.1) GO TO 160
|
||
|
C
|
||
|
C ND IS A DUMMY VARIABLE FOR N
|
||
|
C
|
||
|
ND = N
|
||
|
NUD = INT(FNU)
|
||
|
DNU = FNU - NUD
|
||
|
NN = MIN(2,ND)
|
||
|
FN = FNU + N - 1
|
||
|
IF (FN.LT.2.0D0) GO TO 100
|
||
|
C
|
||
|
C OVERFLOW TEST (LEADING EXPONENTIAL OF ASYMPTOTIC EXPANSION)
|
||
|
C FOR THE LAST ORDER, FNU+N-1.GE.NULIM
|
||
|
C
|
||
|
XXN = X/FN
|
||
|
W2N = 1.0D0-XXN*XXN
|
||
|
IF(W2N.LE.0.0D0) GO TO 10
|
||
|
RAN = SQRT(W2N)
|
||
|
AZN = LOG((1.0D0+RAN)/XXN) - RAN
|
||
|
CN = FN*AZN
|
||
|
IF(CN.GT.ELIM) GO TO 170
|
||
|
10 CONTINUE
|
||
|
IF (NUD.LT.NULIM(NN)) GO TO 20
|
||
|
C
|
||
|
C ASYMPTOTIC EXPANSION FOR ORDERS FNU AND FNU+1.GE.NULIM
|
||
|
C
|
||
|
FLGJY = -1.0D0
|
||
|
CALL DASYJY(DYAIRY,X,FNU,FLGJY,NN,Y,WK,IFLW)
|
||
|
IF(IFLW.NE.0) GO TO 170
|
||
|
IF (NN.EQ.1) RETURN
|
||
|
TRX = 2.0D0/X
|
||
|
TM = (FNU+FNU+2.0D0)/X
|
||
|
GO TO 80
|
||
|
C
|
||
|
20 CONTINUE
|
||
|
IF (DNU.NE.0.0D0) GO TO 30
|
||
|
S1 = DBESY0(X)
|
||
|
IF (NUD.EQ.0 .AND. ND.EQ.1) GO TO 70
|
||
|
S2 = DBESY1(X)
|
||
|
GO TO 40
|
||
|
30 CONTINUE
|
||
|
NB = 2
|
||
|
IF (NUD.EQ.0 .AND. ND.EQ.1) NB = 1
|
||
|
CALL DBSYNU(X, DNU, NB, W)
|
||
|
S1 = W(1)
|
||
|
IF (NB.EQ.1) GO TO 70
|
||
|
S2 = W(2)
|
||
|
40 CONTINUE
|
||
|
TRX = 2.0D0/X
|
||
|
TM = (DNU+DNU+2.0D0)/X
|
||
|
C FORWARD RECUR FROM DNU TO FNU+1 TO GET Y(1) AND Y(2)
|
||
|
IF (ND.EQ.1) NUD = NUD - 1
|
||
|
IF (NUD.GT.0) GO TO 50
|
||
|
IF (ND.GT.1) GO TO 70
|
||
|
S1 = S2
|
||
|
GO TO 70
|
||
|
50 CONTINUE
|
||
|
DO 60 I=1,NUD
|
||
|
S = S2
|
||
|
S2 = TM*S2 - S1
|
||
|
S1 = S
|
||
|
TM = TM + TRX
|
||
|
60 CONTINUE
|
||
|
IF (ND.EQ.1) S1 = S2
|
||
|
70 CONTINUE
|
||
|
Y(1) = S1
|
||
|
IF (ND.EQ.1) RETURN
|
||
|
Y(2) = S2
|
||
|
80 CONTINUE
|
||
|
IF (ND.EQ.2) RETURN
|
||
|
C FORWARD RECUR FROM FNU+2 TO FNU+N-1
|
||
|
DO 90 I=3,ND
|
||
|
Y(I) = TM*Y(I-1) - Y(I-2)
|
||
|
TM = TM + TRX
|
||
|
90 CONTINUE
|
||
|
RETURN
|
||
|
C
|
||
|
100 CONTINUE
|
||
|
C OVERFLOW TEST
|
||
|
IF (FN.LE.1.0D0) GO TO 110
|
||
|
IF (-FN*(LOG(X)-0.693D0).GT.ELIM) GO TO 170
|
||
|
110 CONTINUE
|
||
|
IF (DNU.EQ.0.0D0) GO TO 120
|
||
|
CALL DBSYNU(X, FNU, ND, Y)
|
||
|
RETURN
|
||
|
120 CONTINUE
|
||
|
J = NUD
|
||
|
IF (J.EQ.1) GO TO 130
|
||
|
J = J + 1
|
||
|
Y(J) = DBESY0(X)
|
||
|
IF (ND.EQ.1) RETURN
|
||
|
J = J + 1
|
||
|
130 CONTINUE
|
||
|
Y(J) = DBESY1(X)
|
||
|
IF (ND.EQ.1) RETURN
|
||
|
TRX = 2.0D0/X
|
||
|
TM = TRX
|
||
|
GO TO 80
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
140 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DBESY', 'ORDER, FNU, LESS THAN ZERO', 2,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
150 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DBESY', 'X LESS THAN OR EQUAL TO ZERO',
|
||
|
+ 2, 1)
|
||
|
RETURN
|
||
|
160 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DBESY', 'N LESS THAN ONE', 2, 1)
|
||
|
RETURN
|
||
|
170 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DBESY',
|
||
|
+ 'OVERFLOW, FNU OR N TOO LARGE OR X TOO SMALL', 6, 1)
|
||
|
RETURN
|
||
|
END
|