OpenLibm/slatec/dbetai.f

121 lines
3.8 KiB
FortranFixed
Raw Normal View History

*DECK DBETAI
DOUBLE PRECISION FUNCTION DBETAI (X, PIN, QIN)
C***BEGIN PROLOGUE DBETAI
C***PURPOSE Calculate the incomplete Beta function.
C***LIBRARY SLATEC (FNLIB)
C***CATEGORY C7F
C***TYPE DOUBLE PRECISION (BETAI-S, DBETAI-D)
C***KEYWORDS FNLIB, INCOMPLETE BETA FUNCTION, SPECIAL FUNCTIONS
C***AUTHOR Fullerton, W., (LANL)
C***DESCRIPTION
C
C DBETAI calculates the DOUBLE PRECISION incomplete beta function.
C
C The incomplete beta function ratio is the probability that a
C random variable from a beta distribution having parameters PIN and
C QIN will be less than or equal to X.
C
C -- Input Arguments -- All arguments are DOUBLE PRECISION.
C X upper limit of integration. X must be in (0,1) inclusive.
C PIN first beta distribution parameter. PIN must be .GT. 0.0.
C QIN second beta distribution parameter. QIN must be .GT. 0.0.
C
C***REFERENCES Nancy E. Bosten and E. L. Battiste, Remark on Algorithm
C 179, Communications of the ACM 17, 3 (March 1974),
C pp. 156.
C***ROUTINES CALLED D1MACH, DLBETA, XERMSG
C***REVISION HISTORY (YYMMDD)
C 770701 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890911 Removed unnecessary intrinsics. (WRB)
C 890911 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
C***END PROLOGUE DBETAI
DOUBLE PRECISION X, PIN, QIN, ALNEPS, ALNSML, C, EPS, FINSUM, P,
1 PS, Q, SML, TERM, XB, XI, Y, D1MACH, DLBETA, P1
LOGICAL FIRST
SAVE EPS, ALNEPS, SML, ALNSML, FIRST
DATA FIRST /.TRUE./
C***FIRST EXECUTABLE STATEMENT DBETAI
IF (FIRST) THEN
EPS = D1MACH(3)
ALNEPS = LOG (EPS)
SML = D1MACH(1)
ALNSML = LOG (SML)
ENDIF
FIRST = .FALSE.
C
IF (X .LT. 0.D0 .OR. X .GT. 1.D0) CALL XERMSG ('SLATEC', 'DBETAI',
+ 'X IS NOT IN THE RANGE (0,1)', 1, 2)
IF (PIN .LE. 0.D0 .OR. QIN .LE. 0.D0) CALL XERMSG ('SLATEC',
+ 'DBETAI', 'P AND/OR Q IS LE ZERO', 2, 2)
C
Y = X
P = PIN
Q = QIN
IF (Q.LE.P .AND. X.LT.0.8D0) GO TO 20
IF (X.LT.0.2D0) GO TO 20
Y = 1.0D0 - Y
P = QIN
Q = PIN
C
20 IF ((P+Q)*Y/(P+1.D0).LT.EPS) GO TO 80
C
C EVALUATE THE INFINITE SUM FIRST. TERM WILL EQUAL
C Y**P/BETA(PS,P) * (1.-PS)-SUB-I * Y**I / FAC(I) .
C
PS = Q - AINT(Q)
IF (PS.EQ.0.D0) PS = 1.0D0
XB = P*LOG(Y) - DLBETA(PS,P) - LOG(P)
DBETAI = 0.0D0
IF (XB.LT.ALNSML) GO TO 40
C
DBETAI = EXP (XB)
TERM = DBETAI*P
IF (PS.EQ.1.0D0) GO TO 40
N = MAX (ALNEPS/LOG(Y), 4.0D0)
DO 30 I=1,N
XI = I
TERM = TERM * (XI-PS)*Y/XI
DBETAI = DBETAI + TERM/(P+XI)
30 CONTINUE
C
C NOW EVALUATE THE FINITE SUM, MAYBE.
C
40 IF (Q.LE.1.0D0) GO TO 70
C
XB = P*LOG(Y) + Q*LOG(1.0D0-Y) - DLBETA(P,Q) - LOG(Q)
IB = MAX (XB/ALNSML, 0.0D0)
TERM = EXP(XB - IB*ALNSML)
C = 1.0D0/(1.D0-Y)
P1 = Q*C/(P+Q-1.D0)
C
FINSUM = 0.0D0
N = Q
IF (Q.EQ.DBLE(N)) N = N - 1
DO 50 I=1,N
IF (P1.LE.1.0D0 .AND. TERM/EPS.LE.FINSUM) GO TO 60
XI = I
TERM = (Q-XI+1.0D0)*C*TERM/(P+Q-XI)
C
IF (TERM.GT.1.0D0) IB = IB - 1
IF (TERM.GT.1.0D0) TERM = TERM*SML
C
IF (IB.EQ.0) FINSUM = FINSUM + TERM
50 CONTINUE
C
60 DBETAI = DBETAI + FINSUM
70 IF (Y.NE.X .OR. P.NE.PIN) DBETAI = 1.0D0 - DBETAI
DBETAI = MAX (MIN (DBETAI, 1.0D0), 0.0D0)
RETURN
C
80 DBETAI = 0.0D0
XB = P*LOG(MAX(Y,SML)) - LOG(P) - DLBETA(P,Q)
IF (XB.GT.ALNSML .AND. Y.NE.0.0D0) DBETAI = EXP(XB)
IF (Y.NE.X .OR. P.NE.PIN) DBETAI = 1.0D0 - DBETAI
C
RETURN
END