OpenLibm/slatec/dbksol.f

51 lines
1.5 KiB
FortranFixed
Raw Normal View History

*DECK DBKSOL
SUBROUTINE DBKSOL (N, A, X)
C***BEGIN PROLOGUE DBKSOL
C***SUBSIDIARY
C***PURPOSE Subsidiary to DBVSUP
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (BKSOL-S, DBKSOL-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C **********************************************************************
C Solution of an upper triangular linear system by
C back-substitution
C
C The matrix A is assumed to be stored in a linear
C array proceeding in a row-wise manner. The
C vector X contains the given constant vector on input
C and contains the solution on return.
C The actual diagonal of A is unity while a diagonal
C scaling matrix is stored there.
C **********************************************************************
C
C***SEE ALSO DBVSUP
C***ROUTINES CALLED DDOT
C***REVISION HISTORY (YYMMDD)
C 750601 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910722 Updated AUTHOR section. (ALS)
C***END PROLOGUE DBKSOL
C
DOUBLE PRECISION DDOT
INTEGER J, K, M, N, NM1
DOUBLE PRECISION A(*), X(*)
C
C***FIRST EXECUTABLE STATEMENT DBKSOL
M = (N*(N + 1))/2
X(N) = X(N)*A(M)
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 20
DO 10 K = 1, NM1
J = N - K
M = M - K - 1
X(J) = X(J)*A(M) - DDOT(K,A(M+1),1,X(J+1),1)
10 CONTINUE
20 CONTINUE
C
RETURN
END