mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
95 lines
3.5 KiB
FortranFixed
95 lines
3.5 KiB
FortranFixed
|
*DECK DBSPPP
|
||
|
SUBROUTINE DBSPPP (T, A, N, K, LDC, C, XI, LXI, WORK)
|
||
|
C***BEGIN PROLOGUE DBSPPP
|
||
|
C***PURPOSE Convert the B-representation of a B-spline to the piecewise
|
||
|
C polynomial (PP) form.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY E3, K6
|
||
|
C***TYPE DOUBLE PRECISION (BSPPP-S, DBSPPP-D)
|
||
|
C***KEYWORDS B-SPLINE, PIECEWISE POLYNOMIAL
|
||
|
C***AUTHOR Amos, D. E., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Written by Carl de Boor and modified by D. E. Amos
|
||
|
C
|
||
|
C Abstract **** a double precision routine ****
|
||
|
C DBSPPP is the BSPLPP routine of the reference.
|
||
|
C
|
||
|
C DBSPPP converts the B-representation (T,A,N,K) to the
|
||
|
C piecewise polynomial (PP) form (C,XI,LXI,K) for use with
|
||
|
C DPPVAL. Here XI(*), the break point array of length LXI, is
|
||
|
C the knot array T(*) with multiplicities removed. The columns
|
||
|
C of the matrix C(I,J) contain the right Taylor derivatives
|
||
|
C for the polynomial expansion about XI(J) for the intervals
|
||
|
C XI(J) .LE. X .LE. XI(J+1), I=1,K, J=1,LXI. Function DPPVAL
|
||
|
C makes this evaluation at a specified point X in
|
||
|
C XI(1) .LE. X .LE. XI(LXI+1)
|
||
|
C
|
||
|
C Description of Arguments
|
||
|
C
|
||
|
C Input T,A are double precision
|
||
|
C T - knot vector of length N+K
|
||
|
C A - B-spline coefficient vector of length N
|
||
|
C N - number of B-spline coefficients
|
||
|
C N = sum of knot multiplicities-K
|
||
|
C K - order of the B-spline, K .GE. 1
|
||
|
C LDC - leading dimension of C, LDC .GE. K
|
||
|
C
|
||
|
C Output C,XI,WORK are double precision
|
||
|
C C - matrix of dimension at least (K,LXI) containing
|
||
|
C right derivatives at break points
|
||
|
C XI - XI break point vector of length LXI+1
|
||
|
C LXI - number of break points, LXI .LE. N-K+1
|
||
|
C WORK - work vector of length K*(N+3)
|
||
|
C
|
||
|
C Error Conditions
|
||
|
C Improper input is a fatal error
|
||
|
C
|
||
|
C***REFERENCES Carl de Boor, Package for calculating with B-splines,
|
||
|
C SIAM Journal on Numerical Analysis 14, 3 (June 1977),
|
||
|
C pp. 441-472.
|
||
|
C***ROUTINES CALLED DBSPDR, DBSPEV, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800901 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE DBSPPP
|
||
|
C
|
||
|
INTEGER ILEFT, INEV, K, LDC, LXI, N, NK
|
||
|
DOUBLE PRECISION A, C, T, WORK, XI
|
||
|
C DIMENSION T(N+K),XI(LXI+1),C(LDC,*)
|
||
|
C HERE, * = THE FINAL VALUE OF THE OUTPUT PARAMETER LXI.
|
||
|
DIMENSION T(*), A(*), WORK(*), XI(*), C(LDC,*)
|
||
|
C***FIRST EXECUTABLE STATEMENT DBSPPP
|
||
|
IF(K.LT.1) GO TO 100
|
||
|
IF(N.LT.K) GO TO 105
|
||
|
IF(LDC.LT.K) GO TO 110
|
||
|
CALL DBSPDR(T, A, N, K, K, WORK)
|
||
|
LXI = 0
|
||
|
XI(1) = T(K)
|
||
|
INEV = 1
|
||
|
NK = N*K + 1
|
||
|
DO 10 ILEFT=K,N
|
||
|
IF (T(ILEFT+1).EQ.T(ILEFT)) GO TO 10
|
||
|
LXI = LXI + 1
|
||
|
XI(LXI+1) = T(ILEFT+1)
|
||
|
CALL DBSPEV(T,WORK(1),N,K, K,XI(LXI),INEV,C(1,LXI),WORK(NK))
|
||
|
10 CONTINUE
|
||
|
RETURN
|
||
|
100 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DBSPPP', 'K DOES NOT SATISFY K.GE.1', 2,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
105 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DBSPPP', 'N DOES NOT SATISFY N.GE.K', 2,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
110 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DBSPPP', 'LDC DOES NOT SATISFY LDC.GE.K',
|
||
|
+ 2, 1)
|
||
|
RETURN
|
||
|
END
|