OpenLibm/slatec/dcoef.f

198 lines
6.7 KiB
FortranFixed
Raw Normal View History

*DECK DCOEF
SUBROUTINE DCOEF (YH, YP, NCOMP, NROWB, NFC, NIC, B, BETA, COEF,
+ INHOMO, RE, AE, BY, CVEC, WORK, IWORK, IFLAG, NFCC)
C***BEGIN PROLOGUE DCOEF
C***SUBSIDIARY
C***PURPOSE Subsidiary to DBVSUP
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (SCOEF-S, DCOEF-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C **********************************************************************
C INPUT to DCOEF
C **********************************************************************
C
C YH = matrix of homogeneous solutions.
C YP = vector containing particular solution.
C NCOMP = number of components per solution vector.
C NROWB = first dimension of B in calling program.
C NFC = number of base solution vectors.
C NFCC = 2*NFC for the special treatment of COMPLEX*16 valued
C equations. Otherwise, NFCC=NFC.
C NIC = number of specified initial conditions.
C B = boundary condition matrix at X = XFINAL.
C BETA = vector of nonhomogeneous boundary conditions at X = XFINAL.
C 1 - nonzero particular solution
C INHOMO = 2 - zero particular solution
C 3 - eigenvalue problem
C RE = relative error tolerance.
C AE = absolute error tolerance.
C BY = storage space for the matrix B*YH
C CVEC = storage space for the vector BETA-B*YP
C WORK = double precision array of internal storage. Dimension must
C be GE
C NFCC*(NFCC+4)
C IWORK = integer array of internal storage. Dimension must be GE
C 3+NFCC
C
C **********************************************************************
C OUTPUT from DCOEF
C **********************************************************************
C
C COEF = array containing superposition constants.
C IFLAG = indicator of success from DSUDS in solving the
C boundary equations.
C = 0 boundary equations are solved.
C = 1 boundary equations appear to have many solutions.
C = 2 boundary equations appear to be inconsistent.
C = 3 for this value of an eigenparameter, the boundary
C equations have only the zero solution.
C
C **********************************************************************
C
C Subroutine DCOEF solves for the superposition constants from the
C linear equations defined by the boundary conditions at X = XFINAL.
C
C B*YP + B*YH*COEF = BETA
C
C **********************************************************************
C
C***SEE ALSO DBVSUP
C***ROUTINES CALLED DDOT, DSUDS, XGETF, XSETF
C***COMMON BLOCKS DML5MC
C***REVISION HISTORY (YYMMDD)
C 750601 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890921 Realigned order of variables in certain COMMON blocks.
C (WRB)
C 890921 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910722 Updated AUTHOR section. (ALS)
C***END PROLOGUE DCOEF
C
DOUBLE PRECISION DDOT
INTEGER I, IFLAG, INHOMO, IWORK(*), J, K, KFLAG, KI, L, LPAR,
1 MLSO, NCOMP, NCOMP2, NF, NFC, NFCC, NFCCM1, NIC,
2 NROWB
DOUBLE PRECISION AE, B(NROWB,*), BBN, BETA(*), BN, BRN,
1 BY(NFCC,*), BYKL, BYS, COEF(*), CONS, CVEC(*), EPS,
2 FOURU, GAM, RE, SQOVFL, SRU, TWOU, UN, URO, WORK(*),
3 YH(NCOMP,*), YP(*), YPN
C
COMMON /DML5MC/ URO,SRU,EPS,SQOVFL,TWOU,FOURU,LPAR
C***FIRST EXECUTABLE STATEMENT DCOEF
C
C SET UP MATRIX B*YH AND VECTOR BETA - B*YP
C
NCOMP2 = NCOMP/2
DO 80 K = 1, NFCC
DO 10 J = 1, NFC
L = J
IF (NFC .NE. NFCC) L = 2*J - 1
BY(K,L) = DDOT(NCOMP,B(K,1),NROWB,YH(1,J),1)
10 CONTINUE
IF (NFC .EQ. NFCC) GO TO 30
DO 20 J = 1, NFC
L = 2*J
BYKL = DDOT(NCOMP2,B(K,1),NROWB,YH(NCOMP2+1,J),1)
BY(K,L) = DDOT(NCOMP2,B(K,NCOMP2+1),NROWB,YH(1,J),1)
1 - BYKL
20 CONTINUE
30 CONTINUE
GO TO (40,50,60), INHOMO
C CASE 1
40 CONTINUE
CVEC(K) = BETA(K) - DDOT(NCOMP,B(K,1),NROWB,YP,1)
GO TO 70
C CASE 2
50 CONTINUE
CVEC(K) = BETA(K)
GO TO 70
C CASE 3
60 CONTINUE
CVEC(K) = 0.0D0
70 CONTINUE
80 CONTINUE
CONS = ABS(CVEC(1))
BYS = ABS(BY(1,1))
C
C ******************************************************************
C SOLVE LINEAR SYSTEM
C
IFLAG = 0
MLSO = 0
IF (INHOMO .EQ. 3) MLSO = 1
KFLAG = 0.5D0 * LOG10(EPS)
CALL XGETF(NF)
CALL XSETF(0)
90 CONTINUE
CALL DSUDS(BY,COEF,CVEC,NFCC,NFCC,NFCC,KFLAG,MLSO,WORK,IWORK)
IF (KFLAG .NE. 3) GO TO 100
KFLAG = 1
IFLAG = 1
GO TO 90
100 CONTINUE
IF (KFLAG .EQ. 4) IFLAG = 2
CALL XSETF(NF)
IF (NFCC .EQ. 1) GO TO 180
IF (INHOMO .NE. 3) GO TO 170
IF (IWORK(1) .LT. NFCC) GO TO 140
IFLAG = 3
DO 110 K = 1, NFCC
COEF(K) = 0.0D0
110 CONTINUE
COEF(NFCC) = 1.0D0
NFCCM1 = NFCC - 1
DO 130 K = 1, NFCCM1
J = NFCC - K
L = NFCC - J + 1
GAM = DDOT(L,BY(J,J),NFCC,COEF(J),1)/(WORK(J)*BY(J,J))
DO 120 I = J, NFCC
COEF(I) = COEF(I) + GAM*BY(J,I)
120 CONTINUE
130 CONTINUE
GO TO 160
140 CONTINUE
DO 150 K = 1, NFCC
KI = 4*NFCC + K
COEF(K) = WORK(KI)
150 CONTINUE
160 CONTINUE
170 CONTINUE
GO TO 220
180 CONTINUE
C
C ***************************************************************
C TESTING FOR EXISTENCE AND UNIQUENESS OF BOUNDARY-VALUE
C PROBLEM SOLUTION IN A SCALAR CASE
C
BN = 0.0D0
UN = 0.0D0
YPN = 0.0D0
DO 190 K = 1, NCOMP
UN = MAX(UN,ABS(YH(K,1)))
YPN = MAX(YPN,ABS(YP(K)))
BN = MAX(BN,ABS(B(1,K)))
190 CONTINUE
BBN = MAX(BN,ABS(BETA(1)))
IF (BYS .GT. 10.0D0*(RE*UN + AE)*BN) GO TO 200
BRN = BBN/BN*BYS
IF (CONS .GE. 0.1D0*BRN .AND. CONS .LE. 10.0D0*BRN)
1 IFLAG = 1
IF (CONS .GT. 10.0D0*BRN) IFLAG = 2
IF (CONS .LE. RE*ABS(BETA(1)) + AE + (RE*YPN + AE)*BN)
1 IFLAG = 1
IF (INHOMO .EQ. 3) COEF(1) = 1.0D0
GO TO 210
200 CONTINUE
IF (INHOMO .NE. 3) GO TO 210
IFLAG = 3
COEF(1) = 1.0D0
210 CONTINUE
220 CONTINUE
RETURN
END