mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
198 lines
6.7 KiB
FortranFixed
198 lines
6.7 KiB
FortranFixed
|
*DECK DCOEF
|
||
|
SUBROUTINE DCOEF (YH, YP, NCOMP, NROWB, NFC, NIC, B, BETA, COEF,
|
||
|
+ INHOMO, RE, AE, BY, CVEC, WORK, IWORK, IFLAG, NFCC)
|
||
|
C***BEGIN PROLOGUE DCOEF
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to DBVSUP
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE DOUBLE PRECISION (SCOEF-S, DCOEF-D)
|
||
|
C***AUTHOR Watts, H. A., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C **********************************************************************
|
||
|
C INPUT to DCOEF
|
||
|
C **********************************************************************
|
||
|
C
|
||
|
C YH = matrix of homogeneous solutions.
|
||
|
C YP = vector containing particular solution.
|
||
|
C NCOMP = number of components per solution vector.
|
||
|
C NROWB = first dimension of B in calling program.
|
||
|
C NFC = number of base solution vectors.
|
||
|
C NFCC = 2*NFC for the special treatment of COMPLEX*16 valued
|
||
|
C equations. Otherwise, NFCC=NFC.
|
||
|
C NIC = number of specified initial conditions.
|
||
|
C B = boundary condition matrix at X = XFINAL.
|
||
|
C BETA = vector of nonhomogeneous boundary conditions at X = XFINAL.
|
||
|
C 1 - nonzero particular solution
|
||
|
C INHOMO = 2 - zero particular solution
|
||
|
C 3 - eigenvalue problem
|
||
|
C RE = relative error tolerance.
|
||
|
C AE = absolute error tolerance.
|
||
|
C BY = storage space for the matrix B*YH
|
||
|
C CVEC = storage space for the vector BETA-B*YP
|
||
|
C WORK = double precision array of internal storage. Dimension must
|
||
|
C be GE
|
||
|
C NFCC*(NFCC+4)
|
||
|
C IWORK = integer array of internal storage. Dimension must be GE
|
||
|
C 3+NFCC
|
||
|
C
|
||
|
C **********************************************************************
|
||
|
C OUTPUT from DCOEF
|
||
|
C **********************************************************************
|
||
|
C
|
||
|
C COEF = array containing superposition constants.
|
||
|
C IFLAG = indicator of success from DSUDS in solving the
|
||
|
C boundary equations.
|
||
|
C = 0 boundary equations are solved.
|
||
|
C = 1 boundary equations appear to have many solutions.
|
||
|
C = 2 boundary equations appear to be inconsistent.
|
||
|
C = 3 for this value of an eigenparameter, the boundary
|
||
|
C equations have only the zero solution.
|
||
|
C
|
||
|
C **********************************************************************
|
||
|
C
|
||
|
C Subroutine DCOEF solves for the superposition constants from the
|
||
|
C linear equations defined by the boundary conditions at X = XFINAL.
|
||
|
C
|
||
|
C B*YP + B*YH*COEF = BETA
|
||
|
C
|
||
|
C **********************************************************************
|
||
|
C
|
||
|
C***SEE ALSO DBVSUP
|
||
|
C***ROUTINES CALLED DDOT, DSUDS, XGETF, XSETF
|
||
|
C***COMMON BLOCKS DML5MC
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 750601 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890921 Realigned order of variables in certain COMMON blocks.
|
||
|
C (WRB)
|
||
|
C 890921 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C 910722 Updated AUTHOR section. (ALS)
|
||
|
C***END PROLOGUE DCOEF
|
||
|
C
|
||
|
DOUBLE PRECISION DDOT
|
||
|
INTEGER I, IFLAG, INHOMO, IWORK(*), J, K, KFLAG, KI, L, LPAR,
|
||
|
1 MLSO, NCOMP, NCOMP2, NF, NFC, NFCC, NFCCM1, NIC,
|
||
|
2 NROWB
|
||
|
DOUBLE PRECISION AE, B(NROWB,*), BBN, BETA(*), BN, BRN,
|
||
|
1 BY(NFCC,*), BYKL, BYS, COEF(*), CONS, CVEC(*), EPS,
|
||
|
2 FOURU, GAM, RE, SQOVFL, SRU, TWOU, UN, URO, WORK(*),
|
||
|
3 YH(NCOMP,*), YP(*), YPN
|
||
|
C
|
||
|
COMMON /DML5MC/ URO,SRU,EPS,SQOVFL,TWOU,FOURU,LPAR
|
||
|
C***FIRST EXECUTABLE STATEMENT DCOEF
|
||
|
C
|
||
|
C SET UP MATRIX B*YH AND VECTOR BETA - B*YP
|
||
|
C
|
||
|
NCOMP2 = NCOMP/2
|
||
|
DO 80 K = 1, NFCC
|
||
|
DO 10 J = 1, NFC
|
||
|
L = J
|
||
|
IF (NFC .NE. NFCC) L = 2*J - 1
|
||
|
BY(K,L) = DDOT(NCOMP,B(K,1),NROWB,YH(1,J),1)
|
||
|
10 CONTINUE
|
||
|
IF (NFC .EQ. NFCC) GO TO 30
|
||
|
DO 20 J = 1, NFC
|
||
|
L = 2*J
|
||
|
BYKL = DDOT(NCOMP2,B(K,1),NROWB,YH(NCOMP2+1,J),1)
|
||
|
BY(K,L) = DDOT(NCOMP2,B(K,NCOMP2+1),NROWB,YH(1,J),1)
|
||
|
1 - BYKL
|
||
|
20 CONTINUE
|
||
|
30 CONTINUE
|
||
|
GO TO (40,50,60), INHOMO
|
||
|
C CASE 1
|
||
|
40 CONTINUE
|
||
|
CVEC(K) = BETA(K) - DDOT(NCOMP,B(K,1),NROWB,YP,1)
|
||
|
GO TO 70
|
||
|
C CASE 2
|
||
|
50 CONTINUE
|
||
|
CVEC(K) = BETA(K)
|
||
|
GO TO 70
|
||
|
C CASE 3
|
||
|
60 CONTINUE
|
||
|
CVEC(K) = 0.0D0
|
||
|
70 CONTINUE
|
||
|
80 CONTINUE
|
||
|
CONS = ABS(CVEC(1))
|
||
|
BYS = ABS(BY(1,1))
|
||
|
C
|
||
|
C ******************************************************************
|
||
|
C SOLVE LINEAR SYSTEM
|
||
|
C
|
||
|
IFLAG = 0
|
||
|
MLSO = 0
|
||
|
IF (INHOMO .EQ. 3) MLSO = 1
|
||
|
KFLAG = 0.5D0 * LOG10(EPS)
|
||
|
CALL XGETF(NF)
|
||
|
CALL XSETF(0)
|
||
|
90 CONTINUE
|
||
|
CALL DSUDS(BY,COEF,CVEC,NFCC,NFCC,NFCC,KFLAG,MLSO,WORK,IWORK)
|
||
|
IF (KFLAG .NE. 3) GO TO 100
|
||
|
KFLAG = 1
|
||
|
IFLAG = 1
|
||
|
GO TO 90
|
||
|
100 CONTINUE
|
||
|
IF (KFLAG .EQ. 4) IFLAG = 2
|
||
|
CALL XSETF(NF)
|
||
|
IF (NFCC .EQ. 1) GO TO 180
|
||
|
IF (INHOMO .NE. 3) GO TO 170
|
||
|
IF (IWORK(1) .LT. NFCC) GO TO 140
|
||
|
IFLAG = 3
|
||
|
DO 110 K = 1, NFCC
|
||
|
COEF(K) = 0.0D0
|
||
|
110 CONTINUE
|
||
|
COEF(NFCC) = 1.0D0
|
||
|
NFCCM1 = NFCC - 1
|
||
|
DO 130 K = 1, NFCCM1
|
||
|
J = NFCC - K
|
||
|
L = NFCC - J + 1
|
||
|
GAM = DDOT(L,BY(J,J),NFCC,COEF(J),1)/(WORK(J)*BY(J,J))
|
||
|
DO 120 I = J, NFCC
|
||
|
COEF(I) = COEF(I) + GAM*BY(J,I)
|
||
|
120 CONTINUE
|
||
|
130 CONTINUE
|
||
|
GO TO 160
|
||
|
140 CONTINUE
|
||
|
DO 150 K = 1, NFCC
|
||
|
KI = 4*NFCC + K
|
||
|
COEF(K) = WORK(KI)
|
||
|
150 CONTINUE
|
||
|
160 CONTINUE
|
||
|
170 CONTINUE
|
||
|
GO TO 220
|
||
|
180 CONTINUE
|
||
|
C
|
||
|
C ***************************************************************
|
||
|
C TESTING FOR EXISTENCE AND UNIQUENESS OF BOUNDARY-VALUE
|
||
|
C PROBLEM SOLUTION IN A SCALAR CASE
|
||
|
C
|
||
|
BN = 0.0D0
|
||
|
UN = 0.0D0
|
||
|
YPN = 0.0D0
|
||
|
DO 190 K = 1, NCOMP
|
||
|
UN = MAX(UN,ABS(YH(K,1)))
|
||
|
YPN = MAX(YPN,ABS(YP(K)))
|
||
|
BN = MAX(BN,ABS(B(1,K)))
|
||
|
190 CONTINUE
|
||
|
BBN = MAX(BN,ABS(BETA(1)))
|
||
|
IF (BYS .GT. 10.0D0*(RE*UN + AE)*BN) GO TO 200
|
||
|
BRN = BBN/BN*BYS
|
||
|
IF (CONS .GE. 0.1D0*BRN .AND. CONS .LE. 10.0D0*BRN)
|
||
|
1 IFLAG = 1
|
||
|
IF (CONS .GT. 10.0D0*BRN) IFLAG = 2
|
||
|
IF (CONS .LE. RE*ABS(BETA(1)) + AE + (RE*YPN + AE)*BN)
|
||
|
1 IFLAG = 1
|
||
|
IF (INHOMO .EQ. 3) COEF(1) = 1.0D0
|
||
|
GO TO 210
|
||
|
200 CONTINUE
|
||
|
IF (INHOMO .NE. 3) GO TO 210
|
||
|
IFLAG = 3
|
||
|
COEF(1) = 1.0D0
|
||
|
210 CONTINUE
|
||
|
220 CONTINUE
|
||
|
RETURN
|
||
|
END
|