OpenLibm/slatec/dgamrn.f

108 lines
3.5 KiB
FortranFixed
Raw Normal View History

*DECK DGAMRN
DOUBLE PRECISION FUNCTION DGAMRN (X)
C***BEGIN PROLOGUE DGAMRN
C***SUBSIDIARY
C***PURPOSE Subsidiary to DBSKIN
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (GAMRN-S, DGAMRN-D)
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C Abstract * A Double Precision Routine *
C DGAMRN computes the GAMMA function ratio GAMMA(X)/GAMMA(X+0.5)
C for real X.gt.0. If X.ge.XMIN, an asymptotic expansion is
C evaluated. If X.lt.XMIN, an integer is added to X to form a
C new value of X.ge.XMIN and the asymptotic expansion is eval-
C uated for this new value of X. Successive application of the
C recurrence relation
C
C W(X)=W(X+1)*(1+0.5/X)
C
C reduces the argument to its original value. XMIN and comp-
C utational tolerances are computed as a function of the number
C of digits carried in a word by calls to I1MACH and D1MACH.
C However, the computational accuracy is limited to the max-
C imum of unit roundoff (=D1MACH(4)) and 1.0D-18 since critical
C constants are given to only 18 digits.
C
C Input X is Double Precision
C X - Argument, X.gt.0.0D0
C
C Output DGAMRN is DOUBLE PRECISION
C DGAMRN - Ratio GAMMA(X)/GAMMA(X+0.5)
C
C***SEE ALSO DBSKIN
C***REFERENCES Y. L. Luke, The Special Functions and Their
C Approximations, Vol. 1, Math In Sci. And
C Eng. Series 53, Academic Press, New York, 1969,
C pp. 34-35.
C***ROUTINES CALLED D1MACH, I1MACH
C***REVISION HISTORY (YYMMDD)
C 820601 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890911 Removed unnecessary intrinsics. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910722 Updated AUTHOR section. (ALS)
C 920520 Added REFERENCES section. (WRB)
C***END PROLOGUE DGAMRN
INTEGER I, I1M11, K, MX, NX
INTEGER I1MACH
DOUBLE PRECISION FLN, GR, RLN, S, TOL, TRM, X, XDMY, XINC, XM,
* XMIN, XP, XSQ
DOUBLE PRECISION D1MACH
DIMENSION GR(12)
SAVE GR
C
DATA GR(1), GR(2), GR(3), GR(4), GR(5), GR(6), GR(7), GR(8),
* GR(9), GR(10), GR(11), GR(12) /1.00000000000000000D+00,
* -1.56250000000000000D-02,2.56347656250000000D-03,
* -1.27983093261718750D-03,1.34351104497909546D-03,
* -2.43289663922041655D-03,6.75423753364157164D-03,
* -2.66369606131178216D-02,1.41527455519564332D-01,
* -9.74384543032201613D-01,8.43686251229783675D+00,
* -8.97258321640552515D+01/
C
C***FIRST EXECUTABLE STATEMENT DGAMRN
NX = INT(X)
TOL = MAX(D1MACH(4),1.0D-18)
I1M11 = I1MACH(14)
RLN = D1MACH(5)*I1M11
FLN = MIN(RLN,20.0D0)
FLN = MAX(FLN,3.0D0)
FLN = FLN - 3.0D0
XM = 2.0D0 + FLN*(0.2366D0+0.01723D0*FLN)
MX = INT(XM) + 1
XMIN = MX
XDMY = X - 0.25D0
XINC = 0.0D0
IF (X.GE.XMIN) GO TO 10
XINC = XMIN - NX
XDMY = XDMY + XINC
10 CONTINUE
S = 1.0D0
IF (XDMY*TOL.GT.1.0D0) GO TO 30
XSQ = 1.0D0/(XDMY*XDMY)
XP = XSQ
DO 20 K=2,12
TRM = GR(K)*XP
IF (ABS(TRM).LT.TOL) GO TO 30
S = S + TRM
XP = XP*XSQ
20 CONTINUE
30 CONTINUE
S = S/SQRT(XDMY)
IF (XINC.NE.0.0D0) GO TO 40
DGAMRN = S
RETURN
40 CONTINUE
NX = INT(XINC)
XP = 0.0D0
DO 50 I=1,NX
S = S*(1.0D0+0.5D0/(X+XP))
XP = XP + 1.0D0
50 CONTINUE
DGAMRN = S
RETURN
END