OpenLibm/slatec/dh12.f

144 lines
5.1 KiB
FortranFixed
Raw Normal View History

*DECK DH12
SUBROUTINE DH12 (MODE, LPIVOT, L1, M, U, IUE, UP, C, ICE, ICV,
+ NCV)
C***BEGIN PROLOGUE DH12
C***SUBSIDIARY
C***PURPOSE Subsidiary to DHFTI, DLSEI and DWNNLS
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (H12-S, DH12-D)
C***AUTHOR (UNKNOWN)
C***DESCRIPTION
C
C *** DOUBLE PRECISION VERSION OF H12 ******
C
C C.L.Lawson and R.J.Hanson, Jet Propulsion Laboratory, 1973 Jun 12
C to appear in 'Solving Least Squares Problems', Prentice-Hall, 1974
C
C Construction and/or application of a single
C Householder transformation.. Q = I + U*(U**T)/B
C
C MODE = 1 or 2 to select algorithm H1 or H2 .
C LPIVOT is the index of the pivot element.
C L1,M If L1 .LE. M the transformation will be constructed to
C zero elements indexed from L1 through M. If L1 GT. M
C THE SUBROUTINE DOES AN IDENTITY TRANSFORMATION.
C U(),IUE,UP On entry to H1 U() contains the pivot vector.
C IUE is the storage increment between elements.
C On exit from H1 U() and UP
C contain quantities defining the vector U of the
C Householder transformation. On entry to H2 U()
C and UP should contain quantities previously computed
C by H1. These will not be modified by H2.
C C() On entry to H1 or H2 C() contains a matrix which will be
C regarded as a set of vectors to which the Householder
C transformation is to be applied. On exit C() contains the
C set of transformed vectors.
C ICE Storage increment between elements of vectors in C().
C ICV Storage increment between vectors in C().
C NCV Number of vectors in C() to be transformed. If NCV .LE. 0
C no operations will be done on C().
C
C***SEE ALSO DHFTI, DLSEI, DWNNLS
C***ROUTINES CALLED DAXPY, DDOT, DSWAP
C***REVISION HISTORY (YYMMDD)
C 790101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 900911 Added DDOT to DOUBLE PRECISION statement. (WRB)
C***END PROLOGUE DH12
INTEGER I, I2, I3, I4, ICE, ICV, INCR, IUE, J, KL1, KL2, KLP,
* L1, L1M1, LPIVOT, M, MML1P2, MODE, NCV
DOUBLE PRECISION B, C, CL, CLINV, ONE, UL1M1, SM, U, UP, DDOT
DIMENSION U(IUE,*), C(*)
C BEGIN BLOCK PERMITTING ...EXITS TO 140
C***FIRST EXECUTABLE STATEMENT DH12
ONE = 1.0D0
C
C ...EXIT
IF (0 .GE. LPIVOT .OR. LPIVOT .GE. L1 .OR. L1 .GT. M) GO TO 140
CL = ABS(U(1,LPIVOT))
IF (MODE .EQ. 2) GO TO 40
C ****** CONSTRUCT THE TRANSFORMATION. ******
DO 10 J = L1, M
CL = MAX(ABS(U(1,J)),CL)
10 CONTINUE
IF (CL .GT. 0.0D0) GO TO 20
C .........EXIT
GO TO 140
20 CONTINUE
CLINV = ONE/CL
SM = (U(1,LPIVOT)*CLINV)**2
DO 30 J = L1, M
SM = SM + (U(1,J)*CLINV)**2
30 CONTINUE
CL = CL*SQRT(SM)
IF (U(1,LPIVOT) .GT. 0.0D0) CL = -CL
UP = U(1,LPIVOT) - CL
U(1,LPIVOT) = CL
GO TO 50
40 CONTINUE
C ****** APPLY THE TRANSFORMATION I+U*(U**T)/B TO C. ******
C
IF (CL .GT. 0.0D0) GO TO 50
C ......EXIT
GO TO 140
50 CONTINUE
C ...EXIT
IF (NCV .LE. 0) GO TO 140
B = UP*U(1,LPIVOT)
C B MUST BE NONPOSITIVE HERE. IF B = 0., RETURN.
C
IF (B .LT. 0.0D0) GO TO 60
C ......EXIT
GO TO 140
60 CONTINUE
B = ONE/B
MML1P2 = M - L1 + 2
IF (MML1P2 .LE. 20) GO TO 80
L1M1 = L1 - 1
KL1 = 1 + (L1M1 - 1)*ICE
KL2 = KL1
KLP = 1 + (LPIVOT - 1)*ICE
UL1M1 = U(1,L1M1)
U(1,L1M1) = UP
IF (LPIVOT .NE. L1M1) CALL DSWAP(NCV,C(KL1),ICV,C(KLP),ICV)
DO 70 J = 1, NCV
SM = DDOT(MML1P2,U(1,L1M1),IUE,C(KL1),ICE)
SM = SM*B
CALL DAXPY(MML1P2,SM,U(1,L1M1),IUE,C(KL1),ICE)
KL1 = KL1 + ICV
70 CONTINUE
U(1,L1M1) = UL1M1
C ......EXIT
IF (LPIVOT .EQ. L1M1) GO TO 140
KL1 = KL2
CALL DSWAP(NCV,C(KL1),ICV,C(KLP),ICV)
GO TO 130
80 CONTINUE
I2 = 1 - ICV + ICE*(LPIVOT - 1)
INCR = ICE*(L1 - LPIVOT)
DO 120 J = 1, NCV
I2 = I2 + ICV
I3 = I2 + INCR
I4 = I3
SM = C(I2)*UP
DO 90 I = L1, M
SM = SM + C(I3)*U(1,I)
I3 = I3 + ICE
90 CONTINUE
IF (SM .EQ. 0.0D0) GO TO 110
SM = SM*B
C(I2) = C(I2) + SM*UP
DO 100 I = L1, M
C(I4) = C(I4) + SM*U(1,I)
I4 = I4 + ICE
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
RETURN
END