mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
319 lines
12 KiB
FortranFixed
319 lines
12 KiB
FortranFixed
|
*DECK DLSSUD
|
||
|
SUBROUTINE DLSSUD (A, X, B, N, M, NRDA, U, NRDU, IFLAG, MLSO,
|
||
|
+ IRANK, ISCALE, Q, DIAG, KPIVOT, S, DIV, TD, ISFLG, SCALES)
|
||
|
C***BEGIN PROLOGUE DLSSUD
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to DBVSUP and DSUDS
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE DOUBLE PRECISION (LSSUDS-S, DLSSUD-D)
|
||
|
C***AUTHOR Watts, H. A., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C DLSSUD solves the underdetermined system of equations A Z = B,
|
||
|
C where A is N by M and N .LE. M. In particular, if rank A equals
|
||
|
C IRA, a vector X and a matrix U are determined such that X is the
|
||
|
C UNIQUE solution of smallest length, satisfying A X = B, and the
|
||
|
C columns of U form an orthonormal basis for the null space of A,
|
||
|
C satisfying A U = 0 . Then all solutions Z are given by
|
||
|
C Z = X + C(1)*U(1) + ..... + C(M-IRA)*U(M-IRA)
|
||
|
C where U(J) represents the J-th column of U and the C(J) are
|
||
|
C arbitrary constants.
|
||
|
C If the system of equations are not compatible, only the least
|
||
|
C squares solution of minimal length is computed.
|
||
|
C
|
||
|
C *********************************************************************
|
||
|
C INPUT
|
||
|
C *********************************************************************
|
||
|
C
|
||
|
C A -- Contains the matrix of N equations in M unknowns, A remains
|
||
|
C unchanged, must be dimensioned NRDA by M.
|
||
|
C X -- Solution array of length at least M.
|
||
|
C B -- Given constant vector of length N, B remains unchanged.
|
||
|
C N -- Number of equations, N greater or equal to 1.
|
||
|
C M -- Number of unknowns, M greater or equal to N.
|
||
|
C NRDA -- Row dimension of A, NRDA greater or equal to N.
|
||
|
C U -- Matrix used for solution, must be dimensioned NRDU by
|
||
|
C (M - rank of A).
|
||
|
C (storage for U may be ignored when only the minimal length
|
||
|
C solution X is desired)
|
||
|
C NRDU -- Row dimension of U, NRDU greater or equal to M.
|
||
|
C (if only the minimal length solution is wanted,
|
||
|
C NRDU=0 is acceptable)
|
||
|
C IFLAG -- Status indicator
|
||
|
C =0 for the first call (and for each new problem defined by
|
||
|
C a new matrix A) when the matrix data is treated as exact
|
||
|
C =-K for the first call (and for each new problem defined by
|
||
|
C a new matrix A) when the matrix data is assumed to be
|
||
|
C accurate to about K digits.
|
||
|
C =1 for subsequent calls whenever the matrix A has already
|
||
|
C been decomposed (problems with new vectors B but
|
||
|
C same matrix A can be handled efficiently).
|
||
|
C MLSO -- =0 if only the minimal length solution is wanted.
|
||
|
C =1 if the complete solution is wanted, includes the
|
||
|
C linear space defined by the matrix U.
|
||
|
C IRANK -- Variable used for the rank of A, set by the code.
|
||
|
C ISCALE -- Scaling indicator
|
||
|
C =-1 if the matrix A is to be pre-scaled by
|
||
|
C columns when appropriate.
|
||
|
C If the scaling indicator is not equal to -1
|
||
|
C no scaling will be attempted.
|
||
|
C For most problems scaling will probably not be necessary.
|
||
|
C Q -- Matrix used for the transformation, must be dimensioned
|
||
|
C NRDA by M.
|
||
|
C DIAG,KPIVOT,S, -- Arrays of length at least N used for internal
|
||
|
C DIV,TD,SCALES storage (except for SCALES which is M).
|
||
|
C ISFLG -- Storage for an internal variable.
|
||
|
C
|
||
|
C *********************************************************************
|
||
|
C OUTPUT
|
||
|
C *********************************************************************
|
||
|
C
|
||
|
C IFLAG -- Status indicator
|
||
|
C =1 if solution was obtained.
|
||
|
C =2 if improper input is detected.
|
||
|
C =3 if rank of matrix is less than N.
|
||
|
C To continue, simply reset IFLAG=1 and call DLSSUD again.
|
||
|
C =4 if the system of equations appears to be inconsistent.
|
||
|
C However, the least squares solution of minimal length
|
||
|
C was obtained.
|
||
|
C X -- Minimal length least squares solution of A Z = B
|
||
|
C IRANK -- Numerically determined rank of A, must not be altered
|
||
|
C on succeeding calls with input values of IFLAG=1.
|
||
|
C U -- Matrix whose M-IRANK columns are mutually orthogonal unit
|
||
|
C vectors which span the null space of A. This is to be ignored
|
||
|
C when MLSO was set to zero or IFLAG=4 on output.
|
||
|
C Q -- Contains the strictly upper triangular part of the reduced
|
||
|
C matrix and transformation information.
|
||
|
C DIAG -- Contains the diagonal elements of the triangular reduced
|
||
|
C matrix.
|
||
|
C KPIVOT -- Contains the pivotal information. The row interchanges
|
||
|
C performed on the original matrix are recorded here.
|
||
|
C S -- Contains the solution of the lower triangular system.
|
||
|
C DIV,TD -- Contains transformation information for rank
|
||
|
C deficient problems.
|
||
|
C SCALES -- Contains the column scaling parameters.
|
||
|
C
|
||
|
C *********************************************************************
|
||
|
C
|
||
|
C***SEE ALSO DBVSUP, DSUDS
|
||
|
C***REFERENCES H. A. Watts, Solving linear least squares problems
|
||
|
C using SODS/SUDS/CODS, Sandia Report SAND77-0683,
|
||
|
C Sandia Laboratories, 1977.
|
||
|
C***ROUTINES CALLED D1MACH, DDOT, DOHTRL, DORTHR, J4SAVE, XERMAX,
|
||
|
C XERMSG, XGETF, XSETF
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 750601 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE DLSSUD
|
||
|
INTEGER J4SAVE
|
||
|
DOUBLE PRECISION DDOT, D1MACH
|
||
|
INTEGER I, IFLAG, IRANK, IRP, ISCALE, ISFLG, J, JR, K, KP,
|
||
|
1 KPIVOT(*), L, M, MAXMES, MJ, MLSO, N, NFAT, NFATAL, NMIR,
|
||
|
2 NRDA, NRDU, NU
|
||
|
DOUBLE PRECISION A(NRDA,*), B(*), DIAG(*), DIV(*), GAM, GAMMA,
|
||
|
1 Q(NRDA,*), RES, S(*), SCALES(*), SS, TD(*), U(NRDU,*), URO,
|
||
|
2 X(*)
|
||
|
C
|
||
|
C ******************************************************************
|
||
|
C
|
||
|
C MACHINE PRECISION (COMPUTER UNIT ROUNDOFF VALUE) IS DEFINED
|
||
|
C BY THE FUNCTION D1MACH.
|
||
|
C
|
||
|
C ******************************************************************
|
||
|
C
|
||
|
C BEGIN BLOCK PERMITTING ...EXITS TO 310
|
||
|
C BEGIN BLOCK PERMITTING ...EXITS TO 80
|
||
|
C***FIRST EXECUTABLE STATEMENT DLSSUD
|
||
|
URO = D1MACH(4)
|
||
|
C
|
||
|
IF (N .LT. 1 .OR. M .LT. N .OR. NRDA .LT. N) GO TO 70
|
||
|
IF (NRDU .NE. 0 .AND. NRDU .LT. M) GO TO 70
|
||
|
IF (IFLAG .GT. 0) GO TO 60
|
||
|
C
|
||
|
CALL XGETF(NFATAL)
|
||
|
MAXMES = J4SAVE(4,0,.FALSE.)
|
||
|
ISFLG = -15
|
||
|
IF (IFLAG .EQ. 0) GO TO 10
|
||
|
ISFLG = IFLAG
|
||
|
NFAT = -1
|
||
|
IF (NFATAL .EQ. 0) NFAT = 0
|
||
|
CALL XSETF(NFAT)
|
||
|
CALL XERMAX(1)
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
C COPY MATRIX A INTO MATRIX Q
|
||
|
C
|
||
|
DO 30 K = 1, M
|
||
|
DO 20 J = 1, N
|
||
|
Q(J,K) = A(J,K)
|
||
|
20 CONTINUE
|
||
|
30 CONTINUE
|
||
|
C
|
||
|
C USE ORTHOGONAL TRANSFORMATIONS TO REDUCE Q TO LOWER
|
||
|
C TRIANGULAR FORM
|
||
|
C
|
||
|
CALL DORTHR(Q,N,M,NRDA,IFLAG,IRANK,ISCALE,DIAG,KPIVOT,
|
||
|
1 SCALES,DIV,TD)
|
||
|
C
|
||
|
CALL XSETF(NFATAL)
|
||
|
CALL XERMAX(MAXMES)
|
||
|
IF (IRANK .EQ. N) GO TO 40
|
||
|
C
|
||
|
C FOR RANK DEFICIENT PROBLEMS USE ADDITIONAL
|
||
|
C ORTHOGONAL TRANSFORMATIONS TO FURTHER REDUCE Q
|
||
|
C
|
||
|
IF (IRANK .NE. 0)
|
||
|
1 CALL DOHTRL(Q,N,NRDA,DIAG,IRANK,DIV,TD)
|
||
|
C ...............EXIT
|
||
|
GO TO 310
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
C STORE DIVISORS FOR THE TRIANGULAR SOLUTION
|
||
|
C
|
||
|
DO 50 K = 1, N
|
||
|
DIV(K) = DIAG(K)
|
||
|
50 CONTINUE
|
||
|
C .........EXIT
|
||
|
GO TO 80
|
||
|
60 CONTINUE
|
||
|
C ......EXIT
|
||
|
IF (IFLAG .EQ. 1) GO TO 80
|
||
|
70 CONTINUE
|
||
|
C
|
||
|
C INVALID INPUT FOR DLSSUD
|
||
|
IFLAG = 2
|
||
|
CALL XERMSG ('SLATEC', 'DLSSUD',
|
||
|
+ 'INVALID IMPUT PARAMETERS.', 2, 1)
|
||
|
C ......EXIT
|
||
|
GO TO 310
|
||
|
80 CONTINUE
|
||
|
C
|
||
|
C
|
||
|
IF (IRANK .GT. 0) GO TO 130
|
||
|
C
|
||
|
C SPECIAL CASE FOR THE NULL MATRIX
|
||
|
DO 110 K = 1, M
|
||
|
X(K) = 0.0D0
|
||
|
IF (MLSO .EQ. 0) GO TO 100
|
||
|
U(K,K) = 1.0D0
|
||
|
DO 90 J = 1, M
|
||
|
IF (J .NE. K) U(J,K) = 0.0D0
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
110 CONTINUE
|
||
|
DO 120 K = 1, N
|
||
|
IF (B(K) .GT. 0.0D0) IFLAG = 4
|
||
|
120 CONTINUE
|
||
|
GO TO 300
|
||
|
130 CONTINUE
|
||
|
C BEGIN BLOCK PERMITTING ...EXITS TO 180
|
||
|
C
|
||
|
C COPY CONSTANT VECTOR INTO S AFTER FIRST INTERCHANGING
|
||
|
C THE ELEMENTS ACCORDING TO THE PIVOTAL SEQUENCE
|
||
|
C
|
||
|
DO 140 K = 1, N
|
||
|
KP = KPIVOT(K)
|
||
|
X(K) = B(KP)
|
||
|
140 CONTINUE
|
||
|
DO 150 K = 1, N
|
||
|
S(K) = X(K)
|
||
|
150 CONTINUE
|
||
|
C
|
||
|
IRP = IRANK + 1
|
||
|
NU = 1
|
||
|
IF (MLSO .EQ. 0) NU = 0
|
||
|
C ...EXIT
|
||
|
IF (IRANK .EQ. N) GO TO 180
|
||
|
C
|
||
|
C FOR RANK DEFICIENT PROBLEMS WE MUST APPLY THE
|
||
|
C ORTHOGONAL TRANSFORMATION TO S
|
||
|
C WE ALSO CHECK TO SEE IF THE SYSTEM APPEARS TO BE
|
||
|
C INCONSISTENT
|
||
|
C
|
||
|
NMIR = N - IRANK
|
||
|
SS = DDOT(N,S(1),1,S(1),1)
|
||
|
DO 170 L = 1, IRANK
|
||
|
K = IRP - L
|
||
|
GAM = ((TD(K)*S(K)) + DDOT(NMIR,Q(IRP,K),1,S(IRP),1))
|
||
|
1 /(TD(K)*DIV(K))
|
||
|
S(K) = S(K) + GAM*TD(K)
|
||
|
DO 160 J = IRP, N
|
||
|
S(J) = S(J) + GAM*Q(J,K)
|
||
|
160 CONTINUE
|
||
|
170 CONTINUE
|
||
|
RES = DDOT(NMIR,S(IRP),1,S(IRP),1)
|
||
|
C ...EXIT
|
||
|
IF (RES
|
||
|
1 .LE. SS*(10.0D0*MAX(10.0D0**ISFLG,10.0D0*URO))**2)
|
||
|
2 GO TO 180
|
||
|
C
|
||
|
C INCONSISTENT SYSTEM
|
||
|
IFLAG = 4
|
||
|
NU = 0
|
||
|
180 CONTINUE
|
||
|
C
|
||
|
C APPLY FORWARD SUBSTITUTION TO SOLVE LOWER TRIANGULAR SYSTEM
|
||
|
C
|
||
|
S(1) = S(1)/DIV(1)
|
||
|
IF (IRANK .LT. 2) GO TO 200
|
||
|
DO 190 K = 2, IRANK
|
||
|
S(K) = (S(K) - DDOT(K-1,Q(K,1),NRDA,S(1),1))/DIV(K)
|
||
|
190 CONTINUE
|
||
|
200 CONTINUE
|
||
|
C
|
||
|
C INITIALIZE X VECTOR AND THEN APPLY ORTHOGONAL TRANSFORMATION
|
||
|
C
|
||
|
DO 210 K = 1, M
|
||
|
X(K) = 0.0D0
|
||
|
IF (K .LE. IRANK) X(K) = S(K)
|
||
|
210 CONTINUE
|
||
|
C
|
||
|
DO 230 JR = 1, IRANK
|
||
|
J = IRP - JR
|
||
|
MJ = M - J + 1
|
||
|
GAMMA = DDOT(MJ,Q(J,J),NRDA,X(J),1)/(DIAG(J)*Q(J,J))
|
||
|
DO 220 K = J, M
|
||
|
X(K) = X(K) + GAMMA*Q(J,K)
|
||
|
220 CONTINUE
|
||
|
230 CONTINUE
|
||
|
C
|
||
|
C RESCALE ANSWERS AS DICTATED
|
||
|
C
|
||
|
DO 240 K = 1, M
|
||
|
X(K) = X(K)*SCALES(K)
|
||
|
240 CONTINUE
|
||
|
C
|
||
|
IF (NU .EQ. 0 .OR. M .EQ. IRANK) GO TO 290
|
||
|
C
|
||
|
C INITIALIZE U MATRIX AND THEN APPLY ORTHOGONAL
|
||
|
C TRANSFORMATION
|
||
|
C
|
||
|
L = M - IRANK
|
||
|
DO 280 K = 1, L
|
||
|
DO 250 I = 1, M
|
||
|
U(I,K) = 0.0D0
|
||
|
IF (I .EQ. IRANK + K) U(I,K) = 1.0D0
|
||
|
250 CONTINUE
|
||
|
C
|
||
|
DO 270 JR = 1, IRANK
|
||
|
J = IRP - JR
|
||
|
MJ = M - J + 1
|
||
|
GAMMA = DDOT(MJ,Q(J,J),NRDA,U(J,K),1)
|
||
|
1 /(DIAG(J)*Q(J,J))
|
||
|
DO 260 I = J, M
|
||
|
U(I,K) = U(I,K) + GAMMA*Q(J,I)
|
||
|
260 CONTINUE
|
||
|
270 CONTINUE
|
||
|
280 CONTINUE
|
||
|
290 CONTINUE
|
||
|
300 CONTINUE
|
||
|
310 CONTINUE
|
||
|
C
|
||
|
RETURN
|
||
|
END
|