mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 11:12:29 +01:00
126 lines
5 KiB
FortranFixed
126 lines
5 KiB
FortranFixed
|
*DECK DORTH
|
||
|
SUBROUTINE DORTH (VNEW, V, HES, N, LL, LDHES, KMP, SNORMW)
|
||
|
C***BEGIN PROLOGUE DORTH
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Internal routine for DGMRES.
|
||
|
C***LIBRARY SLATEC (SLAP)
|
||
|
C***CATEGORY D2A4, D2B4
|
||
|
C***TYPE DOUBLE PRECISION (SORTH-S, DORTH-D)
|
||
|
C***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
|
||
|
C NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
|
||
|
C***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
|
||
|
C Hindmarsh, Alan, (LLNL), alanh@llnl.gov
|
||
|
C Seager, Mark K., (LLNL), seager@llnl.gov
|
||
|
C Lawrence Livermore National Laboratory
|
||
|
C PO Box 808, L-60
|
||
|
C Livermore, CA 94550 (510) 423-3141
|
||
|
C***DESCRIPTION
|
||
|
C This routine orthogonalizes the vector VNEW against the
|
||
|
C previous KMP vectors in the V array. It uses a modified
|
||
|
C Gram-Schmidt orthogonalization procedure with conditional
|
||
|
C reorthogonalization.
|
||
|
C
|
||
|
C *Usage:
|
||
|
C INTEGER N, LL, LDHES, KMP
|
||
|
C DOUBLE PRECISION VNEW(N), V(N,LL), HES(LDHES,LL), SNORMW
|
||
|
C
|
||
|
C CALL DORTH(VNEW, V, HES, N, LL, LDHES, KMP, SNORMW)
|
||
|
C
|
||
|
C *Arguments:
|
||
|
C VNEW :INOUT Double Precision VNEW(N)
|
||
|
C On input, the vector of length N containing a scaled
|
||
|
C product of the Jacobian and the vector V(*,LL).
|
||
|
C On output, the new vector orthogonal to V(*,i0) to V(*,LL),
|
||
|
C where i0 = max(1, LL-KMP+1).
|
||
|
C V :IN Double Precision V(N,LL)
|
||
|
C The N x LL array containing the previous LL
|
||
|
C orthogonal vectors V(*,1) to V(*,LL).
|
||
|
C HES :INOUT Double Precision HES(LDHES,LL)
|
||
|
C On input, an LL x LL upper Hessenberg matrix containing,
|
||
|
C in HES(I,K), K.lt.LL, the scaled inner products of
|
||
|
C A*V(*,K) and V(*,i).
|
||
|
C On return, column LL of HES is filled in with
|
||
|
C the scaled inner products of A*V(*,LL) and V(*,i).
|
||
|
C N :IN Integer
|
||
|
C The order of the matrix A, and the length of VNEW.
|
||
|
C LL :IN Integer
|
||
|
C The current order of the matrix HES.
|
||
|
C LDHES :IN Integer
|
||
|
C The leading dimension of the HES array.
|
||
|
C KMP :IN Integer
|
||
|
C The number of previous vectors the new vector VNEW
|
||
|
C must be made orthogonal to (KMP .le. MAXL).
|
||
|
C SNORMW :OUT DOUBLE PRECISION
|
||
|
C Scalar containing the l-2 norm of VNEW.
|
||
|
C
|
||
|
C***SEE ALSO DGMRES
|
||
|
C***ROUTINES CALLED DAXPY, DDOT, DNRM2
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 890404 DATE WRITTEN
|
||
|
C 890404 Previous REVISION DATE
|
||
|
C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
|
||
|
C 890922 Numerous changes to prologue to make closer to SLATEC
|
||
|
C standard. (FNF)
|
||
|
C 890929 Numerous changes to reduce SP/DP differences. (FNF)
|
||
|
C 910411 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 910506 Made subsidiary to DGMRES. (FNF)
|
||
|
C 920511 Added complete declaration section. (WRB)
|
||
|
C***END PROLOGUE DORTH
|
||
|
C The following is for optimized compilation on LLNL/LTSS Crays.
|
||
|
CLLL. OPTIMIZE
|
||
|
C .. Scalar Arguments ..
|
||
|
DOUBLE PRECISION SNORMW
|
||
|
INTEGER KMP, LDHES, LL, N
|
||
|
C .. Array Arguments ..
|
||
|
DOUBLE PRECISION HES(LDHES,*), V(N,*), VNEW(*)
|
||
|
C .. Local Scalars ..
|
||
|
DOUBLE PRECISION ARG, SUMDSQ, TEM, VNRM
|
||
|
INTEGER I, I0
|
||
|
C .. External Functions ..
|
||
|
DOUBLE PRECISION DDOT, DNRM2
|
||
|
EXTERNAL DDOT, DNRM2
|
||
|
C .. External Subroutines ..
|
||
|
EXTERNAL DAXPY
|
||
|
C .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, SQRT
|
||
|
C***FIRST EXECUTABLE STATEMENT DORTH
|
||
|
C
|
||
|
C Get norm of unaltered VNEW for later use.
|
||
|
C
|
||
|
VNRM = DNRM2(N, VNEW, 1)
|
||
|
C -------------------------------------------------------------------
|
||
|
C Perform the modified Gram-Schmidt procedure on VNEW =A*V(LL).
|
||
|
C Scaled inner products give new column of HES.
|
||
|
C Projections of earlier vectors are subtracted from VNEW.
|
||
|
C -------------------------------------------------------------------
|
||
|
I0 = MAX(1,LL-KMP+1)
|
||
|
DO 10 I = I0,LL
|
||
|
HES(I,LL) = DDOT(N, V(1,I), 1, VNEW, 1)
|
||
|
TEM = -HES(I,LL)
|
||
|
CALL DAXPY(N, TEM, V(1,I), 1, VNEW, 1)
|
||
|
10 CONTINUE
|
||
|
C -------------------------------------------------------------------
|
||
|
C Compute SNORMW = norm of VNEW. If VNEW is small compared
|
||
|
C to its input value (in norm), then reorthogonalize VNEW to
|
||
|
C V(*,1) through V(*,LL). Correct if relative correction
|
||
|
C exceeds 1000*(unit roundoff). Finally, correct SNORMW using
|
||
|
C the dot products involved.
|
||
|
C -------------------------------------------------------------------
|
||
|
SNORMW = DNRM2(N, VNEW, 1)
|
||
|
IF (VNRM + 0.001D0*SNORMW .NE. VNRM) RETURN
|
||
|
SUMDSQ = 0
|
||
|
DO 30 I = I0,LL
|
||
|
TEM = -DDOT(N, V(1,I), 1, VNEW, 1)
|
||
|
IF (HES(I,LL) + 0.001D0*TEM .EQ. HES(I,LL)) GO TO 30
|
||
|
HES(I,LL) = HES(I,LL) - TEM
|
||
|
CALL DAXPY(N, TEM, V(1,I), 1, VNEW, 1)
|
||
|
SUMDSQ = SUMDSQ + TEM**2
|
||
|
30 CONTINUE
|
||
|
IF (SUMDSQ .EQ. 0.0D0) RETURN
|
||
|
ARG = MAX(0.0D0,SNORMW**2 - SUMDSQ)
|
||
|
SNORMW = SQRT(ARG)
|
||
|
C
|
||
|
RETURN
|
||
|
C------------- LAST LINE OF DORTH FOLLOWS ----------------------------
|
||
|
END
|