OpenLibm/slatec/dpjac.f

228 lines
8.7 KiB
FortranFixed
Raw Normal View History

*DECK DPJAC
SUBROUTINE DPJAC (NEQ, Y, YH, NYH, EWT, FTEM, SAVF, WM, IWM, DF,
+ DJAC, RPAR, IPAR)
C***BEGIN PROLOGUE DPJAC
C***SUBSIDIARY
C***PURPOSE Subsidiary to DDEBDF
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (PJAC-S, DPJAC-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C DPJAC sets up the iteration matrix (involving the Jacobian) for the
C integration package DDEBDF.
C
C***SEE ALSO DDEBDF
C***ROUTINES CALLED DGBFA, DGEFA, DVNRMS
C***COMMON BLOCKS DDEBD1
C***REVISION HISTORY (YYMMDD)
C 820301 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890911 Removed unnecessary intrinsics. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910722 Updated AUTHOR section. (ALS)
C 920422 Changed DIMENSION statement. (WRB)
C***END PROLOGUE DPJAC
C
INTEGER I, I1, I2, IER, II, IOWND, IOWNS, IPAR, IWM, J, J1,
1 JJ, JSTART, KFLAG, L, LENP, MAXORD, MBA, MBAND,
2 MEB1, MEBAND, METH, MITER, ML, ML3, MU, N, NEQ,
3 NFE, NJE, NQ, NQU, NST, NYH
DOUBLE PRECISION CON, DI, DVNRMS, EL0, EWT,
1 FAC, FTEM, H, HL0, HMIN, HMXI, HU, R, R0, ROWND, ROWNS,
2 RPAR, SAVF, SRUR, TN, UROUND, WM, Y, YH, YI, YJ, YJJ
EXTERNAL DF, DJAC
DIMENSION Y(*),YH(NYH,*),EWT(*),FTEM(*),SAVF(*),WM(*),IWM(*),
1 RPAR(*),IPAR(*)
COMMON /DDEBD1/ ROWND,ROWNS(210),EL0,H,HMIN,HMXI,HU,TN,UROUND,
1 IOWND(14),IOWNS(6),IER,JSTART,KFLAG,L,METH,MITER,
2 MAXORD,N,NQ,NST,NFE,NJE,NQU
C ------------------------------------------------------------------
C DPJAC IS CALLED BY DSTOD TO COMPUTE AND PROCESS THE MATRIX
C P = I - H*EL(1)*J , WHERE J IS AN APPROXIMATION TO THE JACOBIAN.
C HERE J IS COMPUTED BY THE USER-SUPPLIED ROUTINE DJAC IF
C MITER = 1 OR 4, OR BY FINITE DIFFERENCING IF MITER = 2, 3, OR 5.
C IF MITER = 3, A DIAGONAL APPROXIMATION TO J IS USED.
C J IS STORED IN WM AND REPLACED BY P. IF MITER .NE. 3, P IS THEN
C SUBJECTED TO LU DECOMPOSITION IN PREPARATION FOR LATER SOLUTION
C OF LINEAR SYSTEMS WITH P AS COEFFICIENT MATRIX. THIS IS DONE
C BY DGEFA IF MITER = 1 OR 2, AND BY DGBFA IF MITER = 4 OR 5.
C
C IN ADDITION TO VARIABLES DESCRIBED PREVIOUSLY, COMMUNICATION
C WITH DPJAC USES THE FOLLOWING..
C Y = ARRAY CONTAINING PREDICTED VALUES ON ENTRY.
C FTEM = WORK ARRAY OF LENGTH N (ACOR IN DSTOD ).
C SAVF = ARRAY CONTAINING DF EVALUATED AT PREDICTED Y.
C WM = DOUBLE PRECISION WORK SPACE FOR MATRICES. ON OUTPUT IT
C CONTAINS THE
C INVERSE DIAGONAL MATRIX IF MITER = 3 AND THE LU
C DECOMPOSITION OF P IF MITER IS 1, 2 , 4, OR 5.
C STORAGE OF MATRIX ELEMENTS STARTS AT WM(3).
C WM ALSO CONTAINS THE FOLLOWING MATRIX-RELATED DATA..
C WM(1) = SQRT(UROUND), USED IN NUMERICAL JACOBIAN
C INCREMENTS. WM(2) = H*EL0, SAVED FOR LATER USE IF MITER =
C 3.
C IWM = INTEGER WORK SPACE CONTAINING PIVOT INFORMATION, STARTING
C AT IWM(21), IF MITER IS 1, 2, 4, OR 5. IWM ALSO CONTAINS
C THE BAND PARAMETERS ML = IWM(1) AND MU = IWM(2) IF MITER
C IS 4 OR 5.
C EL0 = EL(1) (INPUT).
C IER = OUTPUT ERROR FLAG, = 0 IF NO TROUBLE, .NE. 0 IF
C P MATRIX FOUND TO BE SINGULAR.
C THIS ROUTINE ALSO USES THE COMMON VARIABLES EL0, H, TN, UROUND,
C MITER, N, NFE, AND NJE.
C-----------------------------------------------------------------------
C BEGIN BLOCK PERMITTING ...EXITS TO 240
C BEGIN BLOCK PERMITTING ...EXITS TO 220
C BEGIN BLOCK PERMITTING ...EXITS TO 130
C BEGIN BLOCK PERMITTING ...EXITS TO 70
C***FIRST EXECUTABLE STATEMENT DPJAC
NJE = NJE + 1
HL0 = H*EL0
GO TO (10,40,90,140,170), MITER
C IF MITER = 1, CALL DJAC AND MULTIPLY BY SCALAR.
C -----------------------
10 CONTINUE
LENP = N*N
DO 20 I = 1, LENP
WM(I+2) = 0.0D0
20 CONTINUE
CALL DJAC(TN,Y,WM(3),N,RPAR,IPAR)
CON = -HL0
DO 30 I = 1, LENP
WM(I+2) = WM(I+2)*CON
30 CONTINUE
C ...EXIT
GO TO 70
C IF MITER = 2, MAKE N CALLS TO DF TO APPROXIMATE J.
C --------------------
40 CONTINUE
FAC = DVNRMS(N,SAVF,EWT)
R0 = 1000.0D0*ABS(H)*UROUND*N*FAC
IF (R0 .EQ. 0.0D0) R0 = 1.0D0
SRUR = WM(1)
J1 = 2
DO 60 J = 1, N
YJ = Y(J)
R = MAX(SRUR*ABS(YJ),R0*EWT(J))
Y(J) = Y(J) + R
FAC = -HL0/R
CALL DF(TN,Y,FTEM,RPAR,IPAR)
DO 50 I = 1, N
WM(I+J1) = (FTEM(I) - SAVF(I))*FAC
50 CONTINUE
Y(J) = YJ
J1 = J1 + N
60 CONTINUE
NFE = NFE + N
70 CONTINUE
C ADD IDENTITY MATRIX.
C -------------------------------------------------
J = 3
DO 80 I = 1, N
WM(J) = WM(J) + 1.0D0
J = J + (N + 1)
80 CONTINUE
C DO LU DECOMPOSITION ON P.
C --------------------------------------------
CALL DGEFA(WM(3),N,N,IWM(21),IER)
C .........EXIT
GO TO 240
C IF MITER = 3, CONSTRUCT A DIAGONAL APPROXIMATION TO J AND
C P. ---------
90 CONTINUE
WM(2) = HL0
IER = 0
R = EL0*0.1D0
DO 100 I = 1, N
Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2))
100 CONTINUE
CALL DF(TN,Y,WM(3),RPAR,IPAR)
NFE = NFE + 1
DO 120 I = 1, N
R0 = H*SAVF(I) - YH(I,2)
DI = 0.1D0*R0 - H*(WM(I+2) - SAVF(I))
WM(I+2) = 1.0D0
IF (ABS(R0) .LT. UROUND*EWT(I)) GO TO 110
C .........EXIT
IF (ABS(DI) .EQ. 0.0D0) GO TO 130
WM(I+2) = 0.1D0*R0/DI
110 CONTINUE
120 CONTINUE
C .........EXIT
GO TO 240
130 CONTINUE
IER = -1
C ......EXIT
GO TO 240
C IF MITER = 4, CALL DJAC AND MULTIPLY BY SCALAR.
C -----------------------
140 CONTINUE
ML = IWM(1)
MU = IWM(2)
ML3 = 3
MBAND = ML + MU + 1
MEBAND = MBAND + ML
LENP = MEBAND*N
DO 150 I = 1, LENP
WM(I+2) = 0.0D0
150 CONTINUE
CALL DJAC(TN,Y,WM(ML3),MEBAND,RPAR,IPAR)
CON = -HL0
DO 160 I = 1, LENP
WM(I+2) = WM(I+2)*CON
160 CONTINUE
C ...EXIT
GO TO 220
C IF MITER = 5, MAKE MBAND CALLS TO DF TO APPROXIMATE J.
C ----------------
170 CONTINUE
ML = IWM(1)
MU = IWM(2)
MBAND = ML + MU + 1
MBA = MIN(MBAND,N)
MEBAND = MBAND + ML
MEB1 = MEBAND - 1
SRUR = WM(1)
FAC = DVNRMS(N,SAVF,EWT)
R0 = 1000.0D0*ABS(H)*UROUND*N*FAC
IF (R0 .EQ. 0.0D0) R0 = 1.0D0
DO 210 J = 1, MBA
DO 180 I = J, N, MBAND
YI = Y(I)
R = MAX(SRUR*ABS(YI),R0*EWT(I))
Y(I) = Y(I) + R
180 CONTINUE
CALL DF(TN,Y,FTEM,RPAR,IPAR)
DO 200 JJ = J, N, MBAND
Y(JJ) = YH(JJ,1)
YJJ = Y(JJ)
R = MAX(SRUR*ABS(YJJ),R0*EWT(JJ))
FAC = -HL0/R
I1 = MAX(JJ-MU,1)
I2 = MIN(JJ+ML,N)
II = JJ*MEB1 - ML + 2
DO 190 I = I1, I2
WM(II+I) = (FTEM(I) - SAVF(I))*FAC
190 CONTINUE
200 CONTINUE
210 CONTINUE
NFE = NFE + MBA
220 CONTINUE
C ADD IDENTITY MATRIX.
C -------------------------------------------------
II = MBAND + 2
DO 230 I = 1, N
WM(II) = WM(II) + 1.0D0
II = II + MEBAND
230 CONTINUE
C DO LU DECOMPOSITION OF P.
C --------------------------------------------
CALL DGBFA(WM(3),MEBAND,N,ML,MU,IWM(21),IER)
240 CONTINUE
RETURN
C ----------------------- END OF SUBROUTINE DPJAC
C -----------------------
END