OpenLibm/slatec/dppco.f

235 lines
7.4 KiB
FortranFixed
Raw Normal View History

*DECK DPPCO
SUBROUTINE DPPCO (AP, N, RCOND, Z, INFO)
C***BEGIN PROLOGUE DPPCO
C***PURPOSE Factor a symmetric positive definite matrix stored in
C packed form and estimate the condition number of the
C matrix.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2B1B
C***TYPE DOUBLE PRECISION (SPPCO-S, DPPCO-D, CPPCO-C)
C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
C MATRIX FACTORIZATION, PACKED, POSITIVE DEFINITE
C***AUTHOR Moler, C. B., (U. of New Mexico)
C***DESCRIPTION
C
C DPPCO factors a double precision symmetric positive definite
C matrix stored in packed form
C and estimates the condition of the matrix.
C
C If RCOND is not needed, DPPFA is slightly faster.
C To solve A*X = B , follow DPPCO by DPPSL.
C To compute INVERSE(A)*C , follow DPPCO by DPPSL.
C To compute DETERMINANT(A) , follow DPPCO by DPPDI.
C To compute INVERSE(A) , follow DPPCO by DPPDI.
C
C On Entry
C
C AP DOUBLE PRECISION (N*(N+1)/2)
C the packed form of a symmetric matrix A . The
C columns of the upper triangle are stored sequentially
C in a one-dimensional array of length N*(N+1)/2 .
C See comments below for details.
C
C N INTEGER
C the order of the matrix A .
C
C On Return
C
C AP an upper triangular matrix R , stored in packed
C form, so that A = TRANS(R)*R .
C If INFO .NE. 0 , the factorization is not complete.
C
C RCOND DOUBLE PRECISION
C an estimate of the reciprocal condition of A .
C For the system A*X = B , relative perturbations
C in A and B of size EPSILON may cause
C relative perturbations in X of size EPSILON/RCOND .
C If RCOND is so small that the logical expression
C 1.0 + RCOND .EQ. 1.0
C is true, then A may be singular to working
C precision. In particular, RCOND is zero if
C exact singularity is detected or the estimate
C underflows. If INFO .NE. 0 , RCOND is unchanged.
C
C Z DOUBLE PRECISION(N)
C a work vector whose contents are usually unimportant.
C If A is singular to working precision, then Z is
C an approximate null vector in the sense that
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
C If INFO .NE. 0 , Z is unchanged.
C
C INFO INTEGER
C = 0 for normal return.
C = K signals an error condition. The leading minor
C of order K is not positive definite.
C
C Packed Storage
C
C The following program segment will pack the upper
C triangle of a symmetric matrix.
C
C K = 0
C DO 20 J = 1, N
C DO 10 I = 1, J
C K = K + 1
C AP(K) = A(I,J)
C 10 CONTINUE
C 20 CONTINUE
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED DASUM, DAXPY, DDOT, DPPFA, DSCAL
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DPPCO
INTEGER N,INFO
DOUBLE PRECISION AP(*),Z(*)
DOUBLE PRECISION RCOND
C
DOUBLE PRECISION DDOT,EK,T,WK,WKM
DOUBLE PRECISION ANORM,S,DASUM,SM,YNORM
INTEGER I,IJ,J,JM1,J1,K,KB,KJ,KK,KP1
C
C FIND NORM OF A
C
C***FIRST EXECUTABLE STATEMENT DPPCO
J1 = 1
DO 30 J = 1, N
Z(J) = DASUM(J,AP(J1),1)
IJ = J1
J1 = J1 + J
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 20
DO 10 I = 1, JM1
Z(I) = Z(I) + ABS(AP(IJ))
IJ = IJ + 1
10 CONTINUE
20 CONTINUE
30 CONTINUE
ANORM = 0.0D0
DO 40 J = 1, N
ANORM = MAX(ANORM,Z(J))
40 CONTINUE
C
C FACTOR
C
CALL DPPFA(AP,N,INFO)
IF (INFO .NE. 0) GO TO 180
C
C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
C GROWTH IN THE ELEMENTS OF W WHERE TRANS(R)*W = E .
C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
C
C SOLVE TRANS(R)*W = E
C
EK = 1.0D0
DO 50 J = 1, N
Z(J) = 0.0D0
50 CONTINUE
KK = 0
DO 110 K = 1, N
KK = KK + K
IF (Z(K) .NE. 0.0D0) EK = SIGN(EK,-Z(K))
IF (ABS(EK-Z(K)) .LE. AP(KK)) GO TO 60
S = AP(KK)/ABS(EK-Z(K))
CALL DSCAL(N,S,Z,1)
EK = S*EK
60 CONTINUE
WK = EK - Z(K)
WKM = -EK - Z(K)
S = ABS(WK)
SM = ABS(WKM)
WK = WK/AP(KK)
WKM = WKM/AP(KK)
KP1 = K + 1
KJ = KK + K
IF (KP1 .GT. N) GO TO 100
DO 70 J = KP1, N
SM = SM + ABS(Z(J)+WKM*AP(KJ))
Z(J) = Z(J) + WK*AP(KJ)
S = S + ABS(Z(J))
KJ = KJ + J
70 CONTINUE
IF (S .GE. SM) GO TO 90
T = WKM - WK
WK = WKM
KJ = KK + K
DO 80 J = KP1, N
Z(J) = Z(J) + T*AP(KJ)
KJ = KJ + J
80 CONTINUE
90 CONTINUE
100 CONTINUE
Z(K) = WK
110 CONTINUE
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
C
C SOLVE R*Y = W
C
DO 130 KB = 1, N
K = N + 1 - KB
IF (ABS(Z(K)) .LE. AP(KK)) GO TO 120
S = AP(KK)/ABS(Z(K))
CALL DSCAL(N,S,Z,1)
120 CONTINUE
Z(K) = Z(K)/AP(KK)
KK = KK - K
T = -Z(K)
CALL DAXPY(K-1,T,AP(KK+1),1,Z(1),1)
130 CONTINUE
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
C
YNORM = 1.0D0
C
C SOLVE TRANS(R)*V = Y
C
DO 150 K = 1, N
Z(K) = Z(K) - DDOT(K-1,AP(KK+1),1,Z(1),1)
KK = KK + K
IF (ABS(Z(K)) .LE. AP(KK)) GO TO 140
S = AP(KK)/ABS(Z(K))
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
140 CONTINUE
Z(K) = Z(K)/AP(KK)
150 CONTINUE
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
C
C SOLVE R*Z = V
C
DO 170 KB = 1, N
K = N + 1 - KB
IF (ABS(Z(K)) .LE. AP(KK)) GO TO 160
S = AP(KK)/ABS(Z(K))
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
160 CONTINUE
Z(K) = Z(K)/AP(KK)
KK = KK - K
T = -Z(K)
CALL DAXPY(K-1,T,AP(KK+1),1,Z(1),1)
170 CONTINUE
C MAKE ZNORM = 1.0
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
C
IF (ANORM .NE. 0.0D0) RCOND = YNORM/ANORM
IF (ANORM .EQ. 0.0D0) RCOND = 0.0D0
180 CONTINUE
RETURN
END