mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
199 lines
7.6 KiB
FortranFixed
199 lines
7.6 KiB
FortranFixed
|
*DECK DQK15I
|
||
|
SUBROUTINE DQK15I (F, BOUN, INF, A, B, RESULT, ABSERR, RESABS,
|
||
|
+ RESASC)
|
||
|
C***BEGIN PROLOGUE DQK15I
|
||
|
C***PURPOSE The original (infinite integration range is mapped
|
||
|
C onto the interval (0,1) and (A,B) is a part of (0,1).
|
||
|
C it is the purpose to compute
|
||
|
C I = Integral of transformed integrand over (A,B),
|
||
|
C J = Integral of ABS(Transformed Integrand) over (A,B).
|
||
|
C***LIBRARY SLATEC (QUADPACK)
|
||
|
C***CATEGORY H2A3A2, H2A4A2
|
||
|
C***TYPE DOUBLE PRECISION (QK15I-S, DQK15I-D)
|
||
|
C***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
|
||
|
C***AUTHOR Piessens, Robert
|
||
|
C Applied Mathematics and Programming Division
|
||
|
C K. U. Leuven
|
||
|
C de Doncker, Elise
|
||
|
C Applied Mathematics and Programming Division
|
||
|
C K. U. Leuven
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Integration Rule
|
||
|
C Standard Fortran subroutine
|
||
|
C Double precision version
|
||
|
C
|
||
|
C PARAMETERS
|
||
|
C ON ENTRY
|
||
|
C F - Double precision
|
||
|
C Function subprogram defining the integrand
|
||
|
C FUNCTION F(X). The actual name for F needs to be
|
||
|
C Declared E X T E R N A L in the calling program.
|
||
|
C
|
||
|
C BOUN - Double precision
|
||
|
C Finite bound of original integration
|
||
|
C Range (SET TO ZERO IF INF = +2)
|
||
|
C
|
||
|
C INF - Integer
|
||
|
C If INF = -1, the original interval is
|
||
|
C (-INFINITY,BOUND),
|
||
|
C If INF = +1, the original interval is
|
||
|
C (BOUND,+INFINITY),
|
||
|
C If INF = +2, the original interval is
|
||
|
C (-INFINITY,+INFINITY) AND
|
||
|
C The integral is computed as the sum of two
|
||
|
C integrals, one over (-INFINITY,0) and one over
|
||
|
C (0,+INFINITY).
|
||
|
C
|
||
|
C A - Double precision
|
||
|
C Lower limit for integration over subrange
|
||
|
C of (0,1)
|
||
|
C
|
||
|
C B - Double precision
|
||
|
C Upper limit for integration over subrange
|
||
|
C of (0,1)
|
||
|
C
|
||
|
C ON RETURN
|
||
|
C RESULT - Double precision
|
||
|
C Approximation to the integral I
|
||
|
C Result is computed by applying the 15-POINT
|
||
|
C KRONROD RULE(RESK) obtained by optimal addition
|
||
|
C of abscissae to the 7-POINT GAUSS RULE(RESG).
|
||
|
C
|
||
|
C ABSERR - Double precision
|
||
|
C Estimate of the modulus of the absolute error,
|
||
|
C WHICH SHOULD EQUAL or EXCEED ABS(I-RESULT)
|
||
|
C
|
||
|
C RESABS - Double precision
|
||
|
C Approximation to the integral J
|
||
|
C
|
||
|
C RESASC - Double precision
|
||
|
C Approximation to the integral of
|
||
|
C ABS((TRANSFORMED INTEGRAND)-I/(B-A)) over (A,B)
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED D1MACH
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800101 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890531 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C***END PROLOGUE DQK15I
|
||
|
C
|
||
|
DOUBLE PRECISION A,ABSC,ABSC1,ABSC2,ABSERR,B,BOUN,CENTR,DINF,
|
||
|
1 D1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,
|
||
|
2 RESABS,RESASC,RESG,RESK,RESKH,RESULT,TABSC1,TABSC2,UFLOW,WG,WGK,
|
||
|
3 XGK
|
||
|
INTEGER INF,J
|
||
|
EXTERNAL F
|
||
|
C
|
||
|
DIMENSION FV1(7),FV2(7),XGK(8),WGK(8),WG(8)
|
||
|
C
|
||
|
C THE ABSCISSAE AND WEIGHTS ARE SUPPLIED FOR THE INTERVAL
|
||
|
C (-1,1). BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND
|
||
|
C THEIR CORRESPONDING WEIGHTS ARE GIVEN.
|
||
|
C
|
||
|
C XGK - ABSCISSAE OF THE 15-POINT KRONROD RULE
|
||
|
C XGK(2), XGK(4), ... ABSCISSAE OF THE 7-POINT
|
||
|
C GAUSS RULE
|
||
|
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
|
||
|
C ADDED TO THE 7-POINT GAUSS RULE
|
||
|
C
|
||
|
C WGK - WEIGHTS OF THE 15-POINT KRONROD RULE
|
||
|
C
|
||
|
C WG - WEIGHTS OF THE 7-POINT GAUSS RULE, CORRESPONDING
|
||
|
C TO THE ABSCISSAE XGK(2), XGK(4), ...
|
||
|
C WG(1), WG(3), ... ARE SET TO ZERO.
|
||
|
C
|
||
|
SAVE XGK, WGK, WG
|
||
|
DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),XGK(8)/
|
||
|
1 0.9914553711208126D+00, 0.9491079123427585D+00,
|
||
|
2 0.8648644233597691D+00, 0.7415311855993944D+00,
|
||
|
3 0.5860872354676911D+00, 0.4058451513773972D+00,
|
||
|
4 0.2077849550078985D+00, 0.0000000000000000D+00/
|
||
|
C
|
||
|
DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),WGK(8)/
|
||
|
1 0.2293532201052922D-01, 0.6309209262997855D-01,
|
||
|
2 0.1047900103222502D+00, 0.1406532597155259D+00,
|
||
|
3 0.1690047266392679D+00, 0.1903505780647854D+00,
|
||
|
4 0.2044329400752989D+00, 0.2094821410847278D+00/
|
||
|
C
|
||
|
DATA WG(1),WG(2),WG(3),WG(4),WG(5),WG(6),WG(7),WG(8)/
|
||
|
1 0.0000000000000000D+00, 0.1294849661688697D+00,
|
||
|
2 0.0000000000000000D+00, 0.2797053914892767D+00,
|
||
|
3 0.0000000000000000D+00, 0.3818300505051189D+00,
|
||
|
4 0.0000000000000000D+00, 0.4179591836734694D+00/
|
||
|
C
|
||
|
C
|
||
|
C LIST OF MAJOR VARIABLES
|
||
|
C -----------------------
|
||
|
C
|
||
|
C CENTR - MID POINT OF THE INTERVAL
|
||
|
C HLGTH - HALF-LENGTH OF THE INTERVAL
|
||
|
C ABSC* - ABSCISSA
|
||
|
C TABSC* - TRANSFORMED ABSCISSA
|
||
|
C FVAL* - FUNCTION VALUE
|
||
|
C RESG - RESULT OF THE 7-POINT GAUSS FORMULA
|
||
|
C RESK - RESULT OF THE 15-POINT KRONROD FORMULA
|
||
|
C RESKH - APPROXIMATION TO THE MEAN VALUE OF THE TRANSFORMED
|
||
|
C INTEGRAND OVER (A,B), I.E. TO I/(B-A)
|
||
|
C
|
||
|
C MACHINE DEPENDENT CONSTANTS
|
||
|
C ---------------------------
|
||
|
C
|
||
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
||
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT DQK15I
|
||
|
EPMACH = D1MACH(4)
|
||
|
UFLOW = D1MACH(1)
|
||
|
DINF = MIN(1,INF)
|
||
|
C
|
||
|
CENTR = 0.5D+00*(A+B)
|
||
|
HLGTH = 0.5D+00*(B-A)
|
||
|
TABSC1 = BOUN+DINF*(0.1D+01-CENTR)/CENTR
|
||
|
FVAL1 = F(TABSC1)
|
||
|
IF(INF.EQ.2) FVAL1 = FVAL1+F(-TABSC1)
|
||
|
FC = (FVAL1/CENTR)/CENTR
|
||
|
C
|
||
|
C COMPUTE THE 15-POINT KRONROD APPROXIMATION TO
|
||
|
C THE INTEGRAL, AND ESTIMATE THE ERROR.
|
||
|
C
|
||
|
RESG = WG(8)*FC
|
||
|
RESK = WGK(8)*FC
|
||
|
RESABS = ABS(RESK)
|
||
|
DO 10 J=1,7
|
||
|
ABSC = HLGTH*XGK(J)
|
||
|
ABSC1 = CENTR-ABSC
|
||
|
ABSC2 = CENTR+ABSC
|
||
|
TABSC1 = BOUN+DINF*(0.1D+01-ABSC1)/ABSC1
|
||
|
TABSC2 = BOUN+DINF*(0.1D+01-ABSC2)/ABSC2
|
||
|
FVAL1 = F(TABSC1)
|
||
|
FVAL2 = F(TABSC2)
|
||
|
IF(INF.EQ.2) FVAL1 = FVAL1+F(-TABSC1)
|
||
|
IF(INF.EQ.2) FVAL2 = FVAL2+F(-TABSC2)
|
||
|
FVAL1 = (FVAL1/ABSC1)/ABSC1
|
||
|
FVAL2 = (FVAL2/ABSC2)/ABSC2
|
||
|
FV1(J) = FVAL1
|
||
|
FV2(J) = FVAL2
|
||
|
FSUM = FVAL1+FVAL2
|
||
|
RESG = RESG+WG(J)*FSUM
|
||
|
RESK = RESK+WGK(J)*FSUM
|
||
|
RESABS = RESABS+WGK(J)*(ABS(FVAL1)+ABS(FVAL2))
|
||
|
10 CONTINUE
|
||
|
RESKH = RESK*0.5D+00
|
||
|
RESASC = WGK(8)*ABS(FC-RESKH)
|
||
|
DO 20 J=1,7
|
||
|
RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
|
||
|
20 CONTINUE
|
||
|
RESULT = RESK*HLGTH
|
||
|
RESASC = RESASC*HLGTH
|
||
|
RESABS = RESABS*HLGTH
|
||
|
ABSERR = ABS((RESK-RESG)*HLGTH)
|
||
|
IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.D0) ABSERR = RESASC*
|
||
|
1 MIN(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00)
|
||
|
IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = MAX
|
||
|
1 ((EPMACH*0.5D+02)*RESABS,ABSERR)
|
||
|
RETURN
|
||
|
END
|