mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
406 lines
14 KiB
FortranFixed
406 lines
14 KiB
FortranFixed
|
*DECK DRJ
|
||
|
DOUBLE PRECISION FUNCTION DRJ (X, Y, Z, P, IER)
|
||
|
C***BEGIN PROLOGUE DRJ
|
||
|
C***PURPOSE Compute the incomplete or complete (X or Y or Z is zero)
|
||
|
C elliptic integral of the 3rd kind. For X, Y, and Z non-
|
||
|
C negative, at most one of them zero, and P positive,
|
||
|
C RJ(X,Y,Z,P) = Integral from zero to infinity of
|
||
|
C -1/2 -1/2 -1/2 -1
|
||
|
C (3/2)(t+X) (t+Y) (t+Z) (t+P) dt.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY C14
|
||
|
C***TYPE DOUBLE PRECISION (RJ-S, DRJ-D)
|
||
|
C***KEYWORDS COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
|
||
|
C INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE THIRD KIND,
|
||
|
C TAYLOR SERIES
|
||
|
C***AUTHOR Carlson, B. C.
|
||
|
C Ames Laboratory-DOE
|
||
|
C Iowa State University
|
||
|
C Ames, IA 50011
|
||
|
C Notis, E. M.
|
||
|
C Ames Laboratory-DOE
|
||
|
C Iowa State University
|
||
|
C Ames, IA 50011
|
||
|
C Pexton, R. L.
|
||
|
C Lawrence Livermore National Laboratory
|
||
|
C Livermore, CA 94550
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C 1. DRJ
|
||
|
C Standard FORTRAN function routine
|
||
|
C Double precision version
|
||
|
C The routine calculates an approximation result to
|
||
|
C DRJ(X,Y,Z,P) = Integral from zero to infinity of
|
||
|
C
|
||
|
C -1/2 -1/2 -1/2 -1
|
||
|
C (3/2)(t+X) (t+Y) (t+Z) (t+P) dt,
|
||
|
C
|
||
|
C where X, Y, and Z are nonnegative, at most one of them is
|
||
|
C zero, and P is positive. If X or Y or Z is zero, the
|
||
|
C integral is COMPLETE. The duplication theorem is iterated
|
||
|
C until the variables are nearly equal, and the function is
|
||
|
C then expanded in Taylor series to fifth order.
|
||
|
C
|
||
|
C
|
||
|
C 2. Calling Sequence
|
||
|
C DRJ( X, Y, Z, P, IER )
|
||
|
C
|
||
|
C Parameters on Entry
|
||
|
C Values assigned by the calling routine
|
||
|
C
|
||
|
C X - Double precision, nonnegative variable
|
||
|
C
|
||
|
C Y - Double precision, nonnegative variable
|
||
|
C
|
||
|
C Z - Double precision, nonnegative variable
|
||
|
C
|
||
|
C P - Double precision, positive variable
|
||
|
C
|
||
|
C
|
||
|
C On Return (values assigned by the DRJ routine)
|
||
|
C
|
||
|
C DRJ - Double precision approximation to the integral
|
||
|
C
|
||
|
C IER - Integer
|
||
|
C
|
||
|
C IER = 0 Normal and reliable termination of the
|
||
|
C routine. It is assumed that the requested
|
||
|
C accuracy has been achieved.
|
||
|
C
|
||
|
C IER > 0 Abnormal termination of the routine
|
||
|
C
|
||
|
C
|
||
|
C X, Y, Z, P are unaltered.
|
||
|
C
|
||
|
C
|
||
|
C 3. Error Messages
|
||
|
C
|
||
|
C Value of IER assigned by the DRJ routine
|
||
|
C
|
||
|
C Value assigned Error Message printed
|
||
|
C IER = 1 MIN(X,Y,Z) .LT. 0.0D0
|
||
|
C = 2 MIN(X+Y,X+Z,Y+Z,P) .LT. LOLIM
|
||
|
C = 3 MAX(X,Y,Z,P) .GT. UPLIM
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C 4. Control Parameters
|
||
|
C
|
||
|
C Values of LOLIM, UPLIM, and ERRTOL are set by the
|
||
|
C routine.
|
||
|
C
|
||
|
C
|
||
|
C LOLIM and UPLIM determine the valid range of X, Y, Z, and P
|
||
|
C
|
||
|
C LOLIM is not less than the cube root of the value
|
||
|
C of LOLIM used in the routine for DRC.
|
||
|
C
|
||
|
C UPLIM is not greater than 0.3 times the cube root of
|
||
|
C the value of UPLIM used in the routine for DRC.
|
||
|
C
|
||
|
C
|
||
|
C Acceptable values for: LOLIM UPLIM
|
||
|
C IBM 360/370 SERIES : 2.0D-26 3.0D+24
|
||
|
C CDC 6000/7000 SERIES : 5.0D-98 3.0D+106
|
||
|
C UNIVAC 1100 SERIES : 5.0D-103 6.0D+101
|
||
|
C CRAY : 1.32D-822 1.4D+821
|
||
|
C VAX 11 SERIES : 2.5D-13 9.0D+11
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C ERRTOL determines the accuracy of the answer
|
||
|
C
|
||
|
C the value assigned by the routine will result
|
||
|
C in solution precision within 1-2 decimals of
|
||
|
C "machine precision".
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C Relative error due to truncation of the series for DRJ
|
||
|
C is less than 3 * ERRTOL ** 6 / (1 - ERRTOL) ** 3/2.
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C The accuracy of the computed approximation to the integral
|
||
|
C can be controlled by choosing the value of ERRTOL.
|
||
|
C Truncation of a Taylor series after terms of fifth order
|
||
|
C introduces an error less than the amount shown in the
|
||
|
C second column of the following table for each value of
|
||
|
C ERRTOL in the first column. In addition to the truncation
|
||
|
C error there will be round-off error, but in practice the
|
||
|
C total error from both sources is usually less than the
|
||
|
C amount given in the table.
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C Sample choices: ERRTOL Relative truncation
|
||
|
C error less than
|
||
|
C 1.0D-3 4.0D-18
|
||
|
C 3.0D-3 3.0D-15
|
||
|
C 1.0D-2 4.0D-12
|
||
|
C 3.0D-2 3.0D-9
|
||
|
C 1.0D-1 4.0D-6
|
||
|
C
|
||
|
C Decreasing ERRTOL by a factor of 10 yields six more
|
||
|
C decimal digits of accuracy at the expense of one or
|
||
|
C two more iterations of the duplication theorem.
|
||
|
C
|
||
|
C *Long Description:
|
||
|
C
|
||
|
C DRJ Special Comments
|
||
|
C
|
||
|
C
|
||
|
C Check by addition theorem: DRJ(X,X+Z,X+W,X+P)
|
||
|
C + DRJ(Y,Y+Z,Y+W,Y+P) + (A-B) * DRJ(A,B,B,A) + 3.0D0 / SQRT(A)
|
||
|
C = DRJ(0,Z,W,P), where X,Y,Z,W,P are positive and X * Y
|
||
|
C = Z * W, A = P * P * (X+Y+Z+W), B = P * (P+X) * (P+Y),
|
||
|
C and B - A = P * (P-Z) * (P-W). The sum of the third and
|
||
|
C fourth terms on the left side is 3.0D0 * DRC(A,B).
|
||
|
C
|
||
|
C
|
||
|
C On Input:
|
||
|
C
|
||
|
C X, Y, Z, and P are the variables in the integral DRJ(X,Y,Z,P).
|
||
|
C
|
||
|
C
|
||
|
C On Output:
|
||
|
C
|
||
|
C
|
||
|
C X, Y, Z, P are unaltered.
|
||
|
C
|
||
|
C ********************************************************
|
||
|
C
|
||
|
C WARNING: Changes in the program may improve speed at the
|
||
|
C expense of robustness.
|
||
|
C
|
||
|
C -------------------------------------------------------------------
|
||
|
C
|
||
|
C
|
||
|
C Special double precision functions via DRJ and DRF
|
||
|
C
|
||
|
C
|
||
|
C Legendre form of ELLIPTIC INTEGRAL of 3rd kind
|
||
|
C -----------------------------------------
|
||
|
C
|
||
|
C
|
||
|
C PHI 2 -1
|
||
|
C P(PHI,K,N) = INT (1+N SIN (THETA) ) *
|
||
|
C 0
|
||
|
C
|
||
|
C
|
||
|
C 2 2 -1/2
|
||
|
C *(1-K SIN (THETA) ) D THETA
|
||
|
C
|
||
|
C
|
||
|
C 2 2 2
|
||
|
C = SIN (PHI) DRF(COS (PHI), 1-K SIN (PHI),1)
|
||
|
C
|
||
|
C 3 2 2 2
|
||
|
C -(N/3) SIN (PHI) DRJ(COS (PHI),1-K SIN (PHI),
|
||
|
C
|
||
|
C 2
|
||
|
C 1,1+N SIN (PHI))
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C Bulirsch form of ELLIPTIC INTEGRAL of 3rd kind
|
||
|
C -----------------------------------------
|
||
|
C
|
||
|
C
|
||
|
C 2 2 2
|
||
|
C EL3(X,KC,P) = X DRF(1,1+KC X ,1+X ) +
|
||
|
C
|
||
|
C 3 2 2 2 2
|
||
|
C +(1/3)(1-P) X DRJ(1,1+KC X ,1+X ,1+PX )
|
||
|
C
|
||
|
C
|
||
|
C 2
|
||
|
C CEL(KC,P,A,B) = A RF(0,KC ,1) +
|
||
|
C
|
||
|
C
|
||
|
C 2
|
||
|
C +(1/3)(B-PA) DRJ(0,KC ,1,P)
|
||
|
C
|
||
|
C
|
||
|
C Heuman's LAMBDA function
|
||
|
C -----------------------------------------
|
||
|
C
|
||
|
C
|
||
|
C 2 2 2 1/2
|
||
|
C L(A,B,P) =(COS (A)SIN(B)COS(B)/(1-COS (A)SIN (B)) )
|
||
|
C
|
||
|
C 2 2 2
|
||
|
C *(SIN(P) DRF(COS (P),1-SIN (A) SIN (P),1)
|
||
|
C
|
||
|
C 2 3 2 2
|
||
|
C +(SIN (A) SIN (P)/(3(1-COS (A) SIN (B))))
|
||
|
C
|
||
|
C 2 2 2
|
||
|
C *DRJ(COS (P),1-SIN (A) SIN (P),1,1-
|
||
|
C
|
||
|
C 2 2 2 2
|
||
|
C -SIN (A) SIN (P)/(1-COS (A) SIN (B))))
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C (PI/2) LAMBDA0(A,B) =L(A,B,PI/2) =
|
||
|
C
|
||
|
C 2 2 2 -1/2
|
||
|
C = COS (A) SIN(B) COS(B) (1-COS (A) SIN (B))
|
||
|
C
|
||
|
C 2 2 2
|
||
|
C *DRF(0,COS (A),1) + (1/3) SIN (A) COS (A)
|
||
|
C
|
||
|
C 2 2 -3/2
|
||
|
C *SIN(B) COS(B) (1-COS (A) SIN (B))
|
||
|
C
|
||
|
C 2 2 2 2 2
|
||
|
C *DRJ(0,COS (A),1,COS (A) COS (B)/(1-COS (A) SIN (B)))
|
||
|
C
|
||
|
C
|
||
|
C Jacobi ZETA function
|
||
|
C -----------------------------------------
|
||
|
C
|
||
|
C 2 2 2 1/2
|
||
|
C Z(B,K) = (K/3) SIN(B) COS(B) (1-K SIN (B))
|
||
|
C
|
||
|
C
|
||
|
C 2 2 2 2
|
||
|
C *DRJ(0,1-K ,1,1-K SIN (B)) / DRF (0,1-K ,1)
|
||
|
C
|
||
|
C
|
||
|
C ---------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
|
||
|
C elliptic integrals, ACM Transactions on Mathematical
|
||
|
C Software 7, 3 (September 1981), pp. 398-403.
|
||
|
C B. C. Carlson, Computing elliptic integrals by
|
||
|
C duplication, Numerische Mathematik 33, (1979),
|
||
|
C pp. 1-16.
|
||
|
C B. C. Carlson, Elliptic integrals of the first kind,
|
||
|
C SIAM Journal of Mathematical Analysis 8, (1977),
|
||
|
C pp. 231-242.
|
||
|
C***ROUTINES CALLED D1MACH, DRC, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 790801 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 891009 Removed unreferenced statement labels. (WRB)
|
||
|
C 891009 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 900510 Changed calls to XERMSG to standard form, and some
|
||
|
C editorial changes. (RWC)).
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE DRJ
|
||
|
INTEGER IER
|
||
|
CHARACTER*16 XERN3, XERN4, XERN5, XERN6, XERN7
|
||
|
DOUBLE PRECISION ALFA, BETA, C1, C2, C3, C4, EA, EB, EC, E2, E3
|
||
|
DOUBLE PRECISION LOLIM, UPLIM, EPSLON, ERRTOL, D1MACH
|
||
|
DOUBLE PRECISION LAMDA, MU, P, PN, PNDEV
|
||
|
DOUBLE PRECISION POWER4, DRC, SIGMA, S1, S2, S3, X, XN, XNDEV
|
||
|
DOUBLE PRECISION XNROOT, Y, YN, YNDEV, YNROOT, Z, ZN, ZNDEV,
|
||
|
* ZNROOT
|
||
|
LOGICAL FIRST
|
||
|
SAVE ERRTOL,LOLIM,UPLIM,C1,C2,C3,C4,FIRST
|
||
|
DATA FIRST /.TRUE./
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT DRJ
|
||
|
IF (FIRST) THEN
|
||
|
ERRTOL = (D1MACH(3)/3.0D0)**(1.0D0/6.0D0)
|
||
|
LOLIM = (5.0D0 * D1MACH(1))**(1.0D0/3.0D0)
|
||
|
UPLIM = 0.30D0*( D1MACH(2) / 5.0D0)**(1.0D0/3.0D0)
|
||
|
C
|
||
|
C1 = 3.0D0/14.0D0
|
||
|
C2 = 1.0D0/3.0D0
|
||
|
C3 = 3.0D0/22.0D0
|
||
|
C4 = 3.0D0/26.0D0
|
||
|
ENDIF
|
||
|
FIRST = .FALSE.
|
||
|
C
|
||
|
C CALL ERROR HANDLER IF NECESSARY.
|
||
|
C
|
||
|
DRJ = 0.0D0
|
||
|
IF (MIN(X,Y,Z).LT.0.0D0) THEN
|
||
|
IER = 1
|
||
|
WRITE (XERN3, '(1PE15.6)') X
|
||
|
WRITE (XERN4, '(1PE15.6)') Y
|
||
|
WRITE (XERN5, '(1PE15.6)') Z
|
||
|
CALL XERMSG ('SLATEC', 'DRJ',
|
||
|
* 'MIN(X,Y,Z).LT.0 WHERE X = ' // XERN3 // ' Y = ' // XERN4 //
|
||
|
* ' AND Z = ' // XERN5, 1, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
IF (MAX(X,Y,Z,P).GT.UPLIM) THEN
|
||
|
IER = 3
|
||
|
WRITE (XERN3, '(1PE15.6)') X
|
||
|
WRITE (XERN4, '(1PE15.6)') Y
|
||
|
WRITE (XERN5, '(1PE15.6)') Z
|
||
|
WRITE (XERN6, '(1PE15.6)') P
|
||
|
WRITE (XERN7, '(1PE15.6)') UPLIM
|
||
|
CALL XERMSG ('SLATEC', 'DRJ',
|
||
|
* 'MAX(X,Y,Z,P).GT.UPLIM WHERE X = ' // XERN3 // ' Y = ' //
|
||
|
* XERN4 // ' Z = ' // XERN5 // ' P = ' // XERN6 //
|
||
|
* ' AND UPLIM = ' // XERN7, 3, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
IF (MIN(X+Y,X+Z,Y+Z,P).LT.LOLIM) THEN
|
||
|
IER = 2
|
||
|
WRITE (XERN3, '(1PE15.6)') X
|
||
|
WRITE (XERN4, '(1PE15.6)') Y
|
||
|
WRITE (XERN5, '(1PE15.6)') Z
|
||
|
WRITE (XERN6, '(1PE15.6)') P
|
||
|
WRITE (XERN7, '(1PE15.6)') LOLIM
|
||
|
CALL XERMSG ('SLATEC', 'RJ',
|
||
|
* 'MIN(X+Y,X+Z,Y+Z,P).LT.LOLIM WHERE X = ' // XERN3 //
|
||
|
* ' Y = ' // XERN4 // ' Z = ' // XERN5 // ' P = ' // XERN6 //
|
||
|
* ' AND LOLIM = ', 2, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
IER = 0
|
||
|
XN = X
|
||
|
YN = Y
|
||
|
ZN = Z
|
||
|
PN = P
|
||
|
SIGMA = 0.0D0
|
||
|
POWER4 = 1.0D0
|
||
|
C
|
||
|
30 MU = (XN+YN+ZN+PN+PN)*0.20D0
|
||
|
XNDEV = (MU-XN)/MU
|
||
|
YNDEV = (MU-YN)/MU
|
||
|
ZNDEV = (MU-ZN)/MU
|
||
|
PNDEV = (MU-PN)/MU
|
||
|
EPSLON = MAX(ABS(XNDEV), ABS(YNDEV), ABS(ZNDEV), ABS(PNDEV))
|
||
|
IF (EPSLON.LT.ERRTOL) GO TO 40
|
||
|
XNROOT = SQRT(XN)
|
||
|
YNROOT = SQRT(YN)
|
||
|
ZNROOT = SQRT(ZN)
|
||
|
LAMDA = XNROOT*(YNROOT+ZNROOT) + YNROOT*ZNROOT
|
||
|
ALFA = PN*(XNROOT+YNROOT+ZNROOT) + XNROOT*YNROOT*ZNROOT
|
||
|
ALFA = ALFA*ALFA
|
||
|
BETA = PN*(PN+LAMDA)*(PN+LAMDA)
|
||
|
SIGMA = SIGMA + POWER4*DRC(ALFA,BETA,IER)
|
||
|
POWER4 = POWER4*0.250D0
|
||
|
XN = (XN+LAMDA)*0.250D0
|
||
|
YN = (YN+LAMDA)*0.250D0
|
||
|
ZN = (ZN+LAMDA)*0.250D0
|
||
|
PN = (PN+LAMDA)*0.250D0
|
||
|
GO TO 30
|
||
|
C
|
||
|
40 EA = XNDEV*(YNDEV+ZNDEV) + YNDEV*ZNDEV
|
||
|
EB = XNDEV*YNDEV*ZNDEV
|
||
|
EC = PNDEV*PNDEV
|
||
|
E2 = EA - 3.0D0*EC
|
||
|
E3 = EB + 2.0D0*PNDEV*(EA-EC)
|
||
|
S1 = 1.0D0 + E2*(-C1+0.750D0*C3*E2-1.50D0*C4*E3)
|
||
|
S2 = EB*(0.50D0*C2+PNDEV*(-C3-C3+PNDEV*C4))
|
||
|
S3 = PNDEV*EA*(C2-PNDEV*C3) - C2*PNDEV*EC
|
||
|
DRJ = 3.0D0*SIGMA + POWER4*(S1+S2+S3)/(MU* SQRT(MU))
|
||
|
RETURN
|
||
|
END
|