OpenLibm/slatec/dspsl.f

197 lines
5.1 KiB
FortranFixed
Raw Normal View History

*DECK DSPSL
SUBROUTINE DSPSL (AP, N, KPVT, B)
C***BEGIN PROLOGUE DSPSL
C***PURPOSE Solve a real symmetric system using the factors obtained
C from DSPFA.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2B1A
C***TYPE DOUBLE PRECISION (SSPSL-S, DSPSL-D, CHPSL-C, CSPSL-C)
C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED, SOLVE, SYMMETRIC
C***AUTHOR Bunch, J., (UCSD)
C***DESCRIPTION
C
C DSISL solves the double precision symmetric system
C A * X = B
C using the factors computed by DSPFA.
C
C On Entry
C
C AP DOUBLE PRECISION(N*(N+1)/2)
C the output from DSPFA.
C
C N INTEGER
C the order of the matrix A .
C
C KPVT INTEGER(N)
C the pivot vector from DSPFA.
C
C B DOUBLE PRECISION(N)
C the right hand side vector.
C
C On Return
C
C B the solution vector X .
C
C Error Condition
C
C A division by zero may occur if DSPCO has set RCOND .EQ. 0.0
C or DSPFA has set INFO .NE. 0 .
C
C To compute INVERSE(A) * C where C is a matrix
C with P columns
C CALL DSPFA(AP,N,KPVT,INFO)
C IF (INFO .NE. 0) GO TO ...
C DO 10 J = 1, P
C CALL DSPSL(AP,N,KPVT,C(1,J))
C 10 CONTINUE
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED DAXPY, DDOT
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891107 Modified routine equivalence list. (WRB)
C 891107 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DSPSL
INTEGER N,KPVT(*)
DOUBLE PRECISION AP(*),B(*)
C
DOUBLE PRECISION AK,AKM1,BK,BKM1,DDOT,DENOM,TEMP
INTEGER IK,IKM1,IKP1,K,KK,KM1K,KM1KM1,KP
C
C LOOP BACKWARD APPLYING THE TRANSFORMATIONS AND
C D INVERSE TO B.
C
C***FIRST EXECUTABLE STATEMENT DSPSL
K = N
IK = (N*(N - 1))/2
10 IF (K .EQ. 0) GO TO 80
KK = IK + K
IF (KPVT(K) .LT. 0) GO TO 40
C
C 1 X 1 PIVOT BLOCK.
C
IF (K .EQ. 1) GO TO 30
KP = KPVT(K)
IF (KP .EQ. K) GO TO 20
C
C INTERCHANGE.
C
TEMP = B(K)
B(K) = B(KP)
B(KP) = TEMP
20 CONTINUE
C
C APPLY THE TRANSFORMATION.
C
CALL DAXPY(K-1,B(K),AP(IK+1),1,B(1),1)
30 CONTINUE
C
C APPLY D INVERSE.
C
B(K) = B(K)/AP(KK)
K = K - 1
IK = IK - K
GO TO 70
40 CONTINUE
C
C 2 X 2 PIVOT BLOCK.
C
IKM1 = IK - (K - 1)
IF (K .EQ. 2) GO TO 60
KP = ABS(KPVT(K))
IF (KP .EQ. K - 1) GO TO 50
C
C INTERCHANGE.
C
TEMP = B(K-1)
B(K-1) = B(KP)
B(KP) = TEMP
50 CONTINUE
C
C APPLY THE TRANSFORMATION.
C
CALL DAXPY(K-2,B(K),AP(IK+1),1,B(1),1)
CALL DAXPY(K-2,B(K-1),AP(IKM1+1),1,B(1),1)
60 CONTINUE
C
C APPLY D INVERSE.
C
KM1K = IK + K - 1
KK = IK + K
AK = AP(KK)/AP(KM1K)
KM1KM1 = IKM1 + K - 1
AKM1 = AP(KM1KM1)/AP(KM1K)
BK = B(K)/AP(KM1K)
BKM1 = B(K-1)/AP(KM1K)
DENOM = AK*AKM1 - 1.0D0
B(K) = (AKM1*BK - BKM1)/DENOM
B(K-1) = (AK*BKM1 - BK)/DENOM
K = K - 2
IK = IK - (K + 1) - K
70 CONTINUE
GO TO 10
80 CONTINUE
C
C LOOP FORWARD APPLYING THE TRANSFORMATIONS.
C
K = 1
IK = 0
90 IF (K .GT. N) GO TO 160
IF (KPVT(K) .LT. 0) GO TO 120
C
C 1 X 1 PIVOT BLOCK.
C
IF (K .EQ. 1) GO TO 110
C
C APPLY THE TRANSFORMATION.
C
B(K) = B(K) + DDOT(K-1,AP(IK+1),1,B(1),1)
KP = KPVT(K)
IF (KP .EQ. K) GO TO 100
C
C INTERCHANGE.
C
TEMP = B(K)
B(K) = B(KP)
B(KP) = TEMP
100 CONTINUE
110 CONTINUE
IK = IK + K
K = K + 1
GO TO 150
120 CONTINUE
C
C 2 X 2 PIVOT BLOCK.
C
IF (K .EQ. 1) GO TO 140
C
C APPLY THE TRANSFORMATION.
C
B(K) = B(K) + DDOT(K-1,AP(IK+1),1,B(1),1)
IKP1 = IK + K
B(K+1) = B(K+1) + DDOT(K-1,AP(IKP1+1),1,B(1),1)
KP = ABS(KPVT(K))
IF (KP .EQ. K) GO TO 130
C
C INTERCHANGE.
C
TEMP = B(K)
B(K) = B(KP)
B(KP) = TEMP
130 CONTINUE
140 CONTINUE
IK = IK + K + K + 1
K = K + 2
150 CONTINUE
GO TO 90
160 CONTINUE
RETURN
END