mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
238 lines
7.7 KiB
FortranFixed
238 lines
7.7 KiB
FortranFixed
|
*DECK DSYR2
|
||
|
SUBROUTINE DSYR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)
|
||
|
C***BEGIN PROLOGUE DSYR2
|
||
|
C***PURPOSE Perform the symmetric rank 2 operation.
|
||
|
C***LIBRARY SLATEC (BLAS)
|
||
|
C***CATEGORY D1B4
|
||
|
C***TYPE DOUBLE PRECISION (SSYR2-S, DSYR2-D, CSYR2-C)
|
||
|
C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
|
||
|
C***AUTHOR Dongarra, J. J., (ANL)
|
||
|
C Du Croz, J., (NAG)
|
||
|
C Hammarling, S., (NAG)
|
||
|
C Hanson, R. J., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C DSYR2 performs the symmetric rank 2 operation
|
||
|
C
|
||
|
C A := alpha*x*y' + alpha*y*x' + A,
|
||
|
C
|
||
|
C where alpha is a scalar, x and y are n element vectors and A is an n
|
||
|
C by n symmetric matrix.
|
||
|
C
|
||
|
C Parameters
|
||
|
C ==========
|
||
|
C
|
||
|
C UPLO - CHARACTER*1.
|
||
|
C On entry, UPLO specifies whether the upper or lower
|
||
|
C triangular part of the array A is to be referenced as
|
||
|
C follows:
|
||
|
C
|
||
|
C UPLO = 'U' or 'u' Only the upper triangular part of A
|
||
|
C is to be referenced.
|
||
|
C
|
||
|
C UPLO = 'L' or 'l' Only the lower triangular part of A
|
||
|
C is to be referenced.
|
||
|
C
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C N - INTEGER.
|
||
|
C On entry, N specifies the order of the matrix A.
|
||
|
C N must be at least zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C ALPHA - DOUBLE PRECISION.
|
||
|
C On entry, ALPHA specifies the scalar alpha.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C X - DOUBLE PRECISION array of dimension at least
|
||
|
C ( 1 + ( n - 1)*abs( INCX)).
|
||
|
C Before entry, the incremented array X must contain the n
|
||
|
C element vector x.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C INCX - INTEGER.
|
||
|
C On entry, INCX specifies the increment for the elements of
|
||
|
C X. INCX must not be zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C Y - DOUBLE PRECISION array of dimension at least
|
||
|
C ( 1 + ( n - 1 )*abs( INCY ) ).
|
||
|
C Before entry, the incremented array Y must contain the n
|
||
|
C element vector y.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C INCY - INTEGER.
|
||
|
C On entry, INCY specifies the increment for the elements of
|
||
|
C Y. INCY must not be zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||
|
C Before entry with UPLO = 'U' or 'u', the leading n by n
|
||
|
C upper triangular part of the array A must contain the upper
|
||
|
C triangular part of the symmetric matrix and the strictly
|
||
|
C lower triangular part of A is not referenced. On exit, the
|
||
|
C upper triangular part of the array A is overwritten by the
|
||
|
C upper triangular part of the updated matrix.
|
||
|
C Before entry with UPLO = 'L' or 'l', the leading n by n
|
||
|
C lower triangular part of the array A must contain the lower
|
||
|
C triangular part of the symmetric matrix and the strictly
|
||
|
C upper triangular part of A is not referenced. On exit, the
|
||
|
C lower triangular part of the array A is overwritten by the
|
||
|
C lower triangular part of the updated matrix.
|
||
|
C
|
||
|
C LDA - INTEGER.
|
||
|
C On entry, LDA specifies the first dimension of A as declared
|
||
|
C in the calling (sub) program. LDA must be at least
|
||
|
C max( 1, n ).
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
|
||
|
C Hanson, R. J. An extended set of Fortran basic linear
|
||
|
C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
|
||
|
C pp. 1-17, March 1988.
|
||
|
C***ROUTINES CALLED LSAME, XERBLA
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 861022 DATE WRITTEN
|
||
|
C 910605 Modified to meet SLATEC prologue standards. Only comment
|
||
|
C lines were modified. (BKS)
|
||
|
C***END PROLOGUE DSYR2
|
||
|
C .. Scalar Arguments ..
|
||
|
DOUBLE PRECISION ALPHA
|
||
|
INTEGER INCX, INCY, LDA, N
|
||
|
CHARACTER*1 UPLO
|
||
|
C .. Array Arguments ..
|
||
|
DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
|
||
|
C .. Parameters ..
|
||
|
DOUBLE PRECISION ZERO
|
||
|
PARAMETER ( ZERO = 0.0D+0 )
|
||
|
C .. Local Scalars ..
|
||
|
DOUBLE PRECISION TEMP1, TEMP2
|
||
|
INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
|
||
|
C .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
C .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
C .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX
|
||
|
C***FIRST EXECUTABLE STATEMENT DSYR2
|
||
|
C
|
||
|
C Test the input parameters.
|
||
|
C
|
||
|
INFO = 0
|
||
|
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
|
||
|
$ .NOT.LSAME( UPLO, 'L' ) )THEN
|
||
|
INFO = 1
|
||
|
ELSE IF( N.LT.0 )THEN
|
||
|
INFO = 2
|
||
|
ELSE IF( INCX.EQ.0 )THEN
|
||
|
INFO = 5
|
||
|
ELSE IF( INCY.EQ.0 )THEN
|
||
|
INFO = 7
|
||
|
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
|
||
|
INFO = 9
|
||
|
END IF
|
||
|
IF( INFO.NE.0 )THEN
|
||
|
CALL XERBLA( 'DSYR2 ', INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
C
|
||
|
C Quick return if possible.
|
||
|
C
|
||
|
IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
|
||
|
$ RETURN
|
||
|
C
|
||
|
C Set up the start points in X and Y if the increments are not both
|
||
|
C unity.
|
||
|
C
|
||
|
IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
|
||
|
IF( INCX.GT.0 )THEN
|
||
|
KX = 1
|
||
|
ELSE
|
||
|
KX = 1 - ( N - 1 )*INCX
|
||
|
END IF
|
||
|
IF( INCY.GT.0 )THEN
|
||
|
KY = 1
|
||
|
ELSE
|
||
|
KY = 1 - ( N - 1 )*INCY
|
||
|
END IF
|
||
|
JX = KX
|
||
|
JY = KY
|
||
|
END IF
|
||
|
C
|
||
|
C Start the operations. In this version the elements of A are
|
||
|
C accessed sequentially with one pass through the triangular part
|
||
|
C of A.
|
||
|
C
|
||
|
IF( LSAME( UPLO, 'U' ) )THEN
|
||
|
C
|
||
|
C Form A when A is stored in the upper triangle.
|
||
|
C
|
||
|
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
|
||
|
DO 20, J = 1, N
|
||
|
IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
|
||
|
TEMP1 = ALPHA*Y( J )
|
||
|
TEMP2 = ALPHA*X( J )
|
||
|
DO 10, I = 1, J
|
||
|
A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
|
||
|
10 CONTINUE
|
||
|
END IF
|
||
|
20 CONTINUE
|
||
|
ELSE
|
||
|
DO 40, J = 1, N
|
||
|
IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
|
||
|
TEMP1 = ALPHA*Y( JY )
|
||
|
TEMP2 = ALPHA*X( JX )
|
||
|
IX = KX
|
||
|
IY = KY
|
||
|
DO 30, I = 1, J
|
||
|
A( I, J ) = A( I, J ) + X( IX )*TEMP1
|
||
|
$ + Y( IY )*TEMP2
|
||
|
IX = IX + INCX
|
||
|
IY = IY + INCY
|
||
|
30 CONTINUE
|
||
|
END IF
|
||
|
JX = JX + INCX
|
||
|
JY = JY + INCY
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
C
|
||
|
C Form A when A is stored in the lower triangle.
|
||
|
C
|
||
|
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
|
||
|
DO 60, J = 1, N
|
||
|
IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
|
||
|
TEMP1 = ALPHA*Y( J )
|
||
|
TEMP2 = ALPHA*X( J )
|
||
|
DO 50, I = J, N
|
||
|
A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
|
||
|
50 CONTINUE
|
||
|
END IF
|
||
|
60 CONTINUE
|
||
|
ELSE
|
||
|
DO 80, J = 1, N
|
||
|
IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
|
||
|
TEMP1 = ALPHA*Y( JY )
|
||
|
TEMP2 = ALPHA*X( JX )
|
||
|
IX = JX
|
||
|
IY = JY
|
||
|
DO 70, I = J, N
|
||
|
A( I, J ) = A( I, J ) + X( IX )*TEMP1
|
||
|
$ + Y( IY )*TEMP2
|
||
|
IX = IX + INCX
|
||
|
IY = IY + INCY
|
||
|
70 CONTINUE
|
||
|
END IF
|
||
|
JX = JX + INCX
|
||
|
JY = JY + INCY
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
C
|
||
|
RETURN
|
||
|
C
|
||
|
C End of DSYR2 .
|
||
|
C
|
||
|
END
|