OpenLibm/slatec/dtrco.f

176 lines
5.5 KiB
FortranFixed
Raw Normal View History

*DECK DTRCO
SUBROUTINE DTRCO (T, LDT, N, RCOND, Z, JOB)
C***BEGIN PROLOGUE DTRCO
C***PURPOSE Estimate the condition number of a triangular matrix.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2A3
C***TYPE DOUBLE PRECISION (STRCO-S, DTRCO-D, CTRCO-C)
C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
C TRIANGULAR MATRIX
C***AUTHOR Moler, C. B., (U. of New Mexico)
C***DESCRIPTION
C
C DTRCO estimates the condition of a double precision triangular
C matrix.
C
C On Entry
C
C T DOUBLE PRECISION(LDT,N)
C T contains the triangular matrix. The zero
C elements of the matrix are not referenced, and
C the corresponding elements of the array can be
C used to store other information.
C
C LDT INTEGER
C LDT is the leading dimension of the array T.
C
C N INTEGER
C N is the order of the system.
C
C JOB INTEGER
C = 0 T is lower triangular.
C = nonzero T is upper triangular.
C
C On Return
C
C RCOND DOUBLE PRECISION
C an estimate of the reciprocal condition of T .
C For the system T*X = B , relative perturbations
C in T and B of size EPSILON may cause
C relative perturbations in X of size EPSILON/RCOND .
C If RCOND is so small that the logical expression
C 1.0 + RCOND .EQ. 1.0
C is true, then T may be singular to working
C precision. In particular, RCOND is zero if
C exact singularity is detected or the estimate
C underflows.
C
C Z DOUBLE PRECISION(N)
C a work vector whose contents are usually unimportant.
C If T is close to a singular matrix, then Z is
C an approximate null vector in the sense that
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED DASUM, DAXPY, DSCAL
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DTRCO
INTEGER LDT,N,JOB
DOUBLE PRECISION T(LDT,*),Z(*)
DOUBLE PRECISION RCOND
C
DOUBLE PRECISION W,WK,WKM,EK
DOUBLE PRECISION TNORM,YNORM,S,SM,DASUM
INTEGER I1,J,J1,J2,K,KK,L
LOGICAL LOWER
C***FIRST EXECUTABLE STATEMENT DTRCO
LOWER = JOB .EQ. 0
C
C COMPUTE 1-NORM OF T
C
TNORM = 0.0D0
DO 10 J = 1, N
L = J
IF (LOWER) L = N + 1 - J
I1 = 1
IF (LOWER) I1 = J
TNORM = MAX(TNORM,DASUM(L,T(I1,J),1))
10 CONTINUE
C
C RCOND = 1/(NORM(T)*(ESTIMATE OF NORM(INVERSE(T)))) .
C ESTIMATE = NORM(Z)/NORM(Y) WHERE T*Z = Y AND TRANS(T)*Y = E .
C TRANS(T) IS THE TRANSPOSE OF T .
C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
C GROWTH IN THE ELEMENTS OF Y .
C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
C
C SOLVE TRANS(T)*Y = E
C
EK = 1.0D0
DO 20 J = 1, N
Z(J) = 0.0D0
20 CONTINUE
DO 100 KK = 1, N
K = KK
IF (LOWER) K = N + 1 - KK
IF (Z(K) .NE. 0.0D0) EK = SIGN(EK,-Z(K))
IF (ABS(EK-Z(K)) .LE. ABS(T(K,K))) GO TO 30
S = ABS(T(K,K))/ABS(EK-Z(K))
CALL DSCAL(N,S,Z,1)
EK = S*EK
30 CONTINUE
WK = EK - Z(K)
WKM = -EK - Z(K)
S = ABS(WK)
SM = ABS(WKM)
IF (T(K,K) .EQ. 0.0D0) GO TO 40
WK = WK/T(K,K)
WKM = WKM/T(K,K)
GO TO 50
40 CONTINUE
WK = 1.0D0
WKM = 1.0D0
50 CONTINUE
IF (KK .EQ. N) GO TO 90
J1 = K + 1
IF (LOWER) J1 = 1
J2 = N
IF (LOWER) J2 = K - 1
DO 60 J = J1, J2
SM = SM + ABS(Z(J)+WKM*T(K,J))
Z(J) = Z(J) + WK*T(K,J)
S = S + ABS(Z(J))
60 CONTINUE
IF (S .GE. SM) GO TO 80
W = WKM - WK
WK = WKM
DO 70 J = J1, J2
Z(J) = Z(J) + W*T(K,J)
70 CONTINUE
80 CONTINUE
90 CONTINUE
Z(K) = WK
100 CONTINUE
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
C
YNORM = 1.0D0
C
C SOLVE T*Z = Y
C
DO 130 KK = 1, N
K = N + 1 - KK
IF (LOWER) K = KK
IF (ABS(Z(K)) .LE. ABS(T(K,K))) GO TO 110
S = ABS(T(K,K))/ABS(Z(K))
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
110 CONTINUE
IF (T(K,K) .NE. 0.0D0) Z(K) = Z(K)/T(K,K)
IF (T(K,K) .EQ. 0.0D0) Z(K) = 1.0D0
I1 = 1
IF (LOWER) I1 = K + 1
IF (KK .GE. N) GO TO 120
W = -Z(K)
CALL DAXPY(N-KK,W,T(I1,K),1,Z(I1),1)
120 CONTINUE
130 CONTINUE
C MAKE ZNORM = 1.0
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
C
IF (TNORM .NE. 0.0D0) RCOND = YNORM/TNORM
IF (TNORM .EQ. 0.0D0) RCOND = 0.0D0
RETURN
END