OpenLibm/slatec/dxcon.f

168 lines
5 KiB
FortranFixed
Raw Normal View History

*DECK DXCON
SUBROUTINE DXCON (X, IX, IERROR)
C***BEGIN PROLOGUE DXCON
C***PURPOSE To provide double-precision floating-point arithmetic
C with an extended exponent range.
C***LIBRARY SLATEC
C***CATEGORY A3D
C***TYPE DOUBLE PRECISION (XCON-S, DXCON-D)
C***KEYWORDS EXTENDED-RANGE DOUBLE-PRECISION ARITHMETIC
C***AUTHOR Lozier, Daniel W., (National Bureau of Standards)
C Smith, John M., (NBS and George Mason University)
C***DESCRIPTION
C DOUBLE PRECISION X
C INTEGER IX
C
C CONVERTS (X,IX) = X*RADIX**IX
C TO DECIMAL FORM IN PREPARATION FOR
C PRINTING, SO THAT (X,IX) = X*10**IX
C WHERE 1/10 .LE. ABS(X) .LT. 1
C IS RETURNED, EXCEPT THAT IF
C (ABS(X),IX) IS BETWEEN RADIX**(-2L)
C AND RADIX**(2L) THEN THE REDUCED
C FORM WITH IX = 0 IS RETURNED.
C
C***SEE ALSO DXSET
C***REFERENCES (NONE)
C***ROUTINES CALLED DXADJ, DXC210, DXRED
C***COMMON BLOCKS DXBLK2
C***REVISION HISTORY (YYMMDD)
C 820712 DATE WRITTEN
C 890126 Revised to meet SLATEC CML recommendations. (DWL and JMS)
C 901019 Revisions to prologue. (DWL and WRB)
C 901106 Changed all specific intrinsics to generic. (WRB)
C Corrected order of sections in prologue and added TYPE
C section. (WRB)
C 920127 Revised PURPOSE section of prologue. (DWL)
C***END PROLOGUE DXCON
DOUBLE PRECISION X
INTEGER IX
C
C THE CONDITIONS IMPOSED ON L AND KMAX BY THIS SUBROUTINE
C ARE
C (1) 4 .LE. L .LE. 2**NBITS - 1 - KMAX
C
C (2) KMAX .LE. ((2**NBITS)-2)/LOG10R - L
C
C THESE CONDITIONS MUST BE MET BY APPROPRIATE CODING
C IN SUBROUTINE DXSET.
C
DOUBLE PRECISION RADIX, RADIXL, RAD2L, DLG10R
INTEGER L, L2, KMAX
COMMON /DXBLK2/ RADIX, RADIXL, RAD2L, DLG10R, L, L2, KMAX
SAVE /DXBLK2/, ISPACE
C
DOUBLE PRECISION A, B, Z
C
DATA ISPACE /1/
C THE PARAMETER ISPACE IS THE INCREMENT USED IN FORM-
C ING THE AUXILIARY INDEX OF THE DECIMAL EXTENDED-RANGE
C FORM. THE RETURNED VALUE OF IX WILL BE AN INTEGER MULT-
C IPLE OF ISPACE. ISPACE MUST SATISFY 1 .LE. ISPACE .LE.
C L/2. IF A VALUE GREATER THAN 1 IS TAKEN, THE RETURNED
C VALUE OF X WILL SATISFY 10**(-ISPACE) .LE. ABS(X) .LE. 1
C WHEN (ABS(X),IX) .LT. RADIX**(-2L), AND 1/10 .LE. ABS(X)
C .LT. 10**(ISPACE-1) WHEN (ABS(X),IX) .GT. RADIX**(2L).
C
C***FIRST EXECUTABLE STATEMENT DXCON
IERROR=0
CALL DXRED(X, IX,IERROR)
IF (IERROR.NE.0) RETURN
IF (IX.EQ.0) GO TO 150
CALL DXADJ(X, IX,IERROR)
IF (IERROR.NE.0) RETURN
C
C CASE 1 IS WHEN (X,IX) IS LESS THAN RADIX**(-2L) IN MAGNITUDE,
C CASE 2 IS WHEN (X,IX) IS GREATER THAN RADIX**(2L) IN MAGNITUDE.
ITEMP = 1
ICASE = (3+SIGN(ITEMP,IX))/2
GO TO (10, 20), ICASE
10 IF (ABS(X).LT.1.0D0) GO TO 30
X = X/RADIXL
IX = IX + L
GO TO 30
20 IF (ABS(X).GE.1.0D0) GO TO 30
X = X*RADIXL
IX = IX - L
30 CONTINUE
C
C AT THIS POINT, RADIX**(-L) .LE. ABS(X) .LT. 1.0D0 IN CASE 1,
C 1.0D0 .LE. ABS(X) .LT. RADIX**L IN CASE 2.
I = LOG10(ABS(X))/DLG10R
A = RADIX**I
GO TO (40, 60), ICASE
40 IF (A.LE.RADIX*ABS(X)) GO TO 50
I = I - 1
A = A/RADIX
GO TO 40
50 IF (ABS(X).LT.A) GO TO 80
I = I + 1
A = A*RADIX
GO TO 50
60 IF (A.LE.ABS(X)) GO TO 70
I = I - 1
A = A/RADIX
GO TO 60
70 IF (ABS(X).LT.RADIX*A) GO TO 80
I = I + 1
A = A*RADIX
GO TO 70
80 CONTINUE
C
C AT THIS POINT I IS SUCH THAT
C RADIX**(I-1) .LE. ABS(X) .LT. RADIX**I IN CASE 1,
C RADIX**I .LE. ABS(X) .LT. RADIX**(I+1) IN CASE 2.
ITEMP = ISPACE/DLG10R
A = RADIX**ITEMP
B = 10.0D0**ISPACE
90 IF (A.LE.B) GO TO 100
ITEMP = ITEMP - 1
A = A/RADIX
GO TO 90
100 IF (B.LT.A*RADIX) GO TO 110
ITEMP = ITEMP + 1
A = A*RADIX
GO TO 100
110 CONTINUE
C
C AT THIS POINT ITEMP IS SUCH THAT
C RADIX**ITEMP .LE. 10**ISPACE .LT. RADIX**(ITEMP+1).
IF (ITEMP.GT.0) GO TO 120
C ITEMP = 0 IF, AND ONLY IF, ISPACE = 1 AND RADIX = 16.0D0
X = X*RADIX**(-I)
IX = IX + I
CALL DXC210(IX, Z, J,IERROR)
IF (IERROR.NE.0) RETURN
X = X*Z
IX = J
GO TO (130, 140), ICASE
120 CONTINUE
I1 = I/ITEMP
X = X*RADIX**(-I1*ITEMP)
IX = IX + I1*ITEMP
C
C AT THIS POINT,
C RADIX**(-ITEMP) .LE. ABS(X) .LT. 1.0D0 IN CASE 1,
C 1.0D0 .LE. ABS(X) .LT. RADIX**ITEMP IN CASE 2.
CALL DXC210(IX, Z, J,IERROR)
IF (IERROR.NE.0) RETURN
J1 = J/ISPACE
J2 = J - J1*ISPACE
X = X*Z*10.0D0**J2
IX = J1*ISPACE
C
C AT THIS POINT,
C 10.0D0**(-2*ISPACE) .LE. ABS(X) .LT. 1.0D0 IN CASE 1,
C 10.0D0**-1 .LE. ABS(X) .LT. 10.0D0**(2*ISPACE-1) IN CASE 2.
GO TO (130, 140), ICASE
130 IF (B*ABS(X).GE.1.0D0) GO TO 150
X = X*B
IX = IX - ISPACE
GO TO 130
140 IF (10.0D0*ABS(X).LT.B) GO TO 150
X = X/B
IX = IX + ISPACE
GO TO 140
150 RETURN
END