mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
100 lines
3.4 KiB
FortranFixed
100 lines
3.4 KiB
FortranFixed
|
*DECK DY
|
||
|
SUBROUTINE DY (U, IDMN, I, J, UYYY, UYYYY)
|
||
|
C***BEGIN PROLOGUE DY
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to SEPELI
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE SINGLE PRECISION (DY-S)
|
||
|
C***AUTHOR (UNKNOWN)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This program computes second order finite difference
|
||
|
C approximations to the third and fourth Y
|
||
|
C partial derivatives of U at the (I,J) mesh point.
|
||
|
C
|
||
|
C***SEE ALSO SEPELI
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***COMMON BLOCKS SPLPCM
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 801001 DATE WRITTEN
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900402 Added TYPE section. (WRB)
|
||
|
C***END PROLOGUE DY
|
||
|
C
|
||
|
COMMON /SPLPCM/ KSWX ,KSWY ,K ,L ,
|
||
|
1 AIT ,BIT ,CIT ,DIT ,
|
||
|
2 MIT ,NIT ,IS ,MS ,
|
||
|
3 JS ,NS ,DLX ,DLY ,
|
||
|
4 TDLX3 ,TDLY3 ,DLX4 ,DLY4
|
||
|
DIMENSION U(IDMN,*)
|
||
|
C***FIRST EXECUTABLE STATEMENT DY
|
||
|
IF (J.GT.2 .AND. J.LT.(L-1)) GO TO 50
|
||
|
IF (J .EQ. 1) GO TO 10
|
||
|
IF (J .EQ. 2) GO TO 30
|
||
|
IF (J .EQ. L-1) GO TO 60
|
||
|
IF (J .EQ. L) GO TO 80
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT Y=C
|
||
|
C
|
||
|
10 IF (KSWY .EQ. 1) GO TO 20
|
||
|
UYYY = (-5.0*U(I,1)+18.0*U(I,2)-24.0*U(I,3)+14.0*U(I,4)-
|
||
|
1 3.0*U(I,5))/TDLY3
|
||
|
UYYYY = (3.0*U(I,1)-14.0*U(I,2)+26.0*U(I,3)-24.0*U(I,4)+
|
||
|
1 11.0*U(I,5)-2.0*U(I,6))/DLY4
|
||
|
RETURN
|
||
|
C
|
||
|
C PERIODIC AT X=A
|
||
|
C
|
||
|
20 UYYY = (-U(I,L-2)+2.0*U(I,L-1)-2.0*U(I,2)+U(I,3))/TDLY3
|
||
|
UYYYY = (U(I,L-2)-4.0*U(I,L-1)+6.0*U(I,1)-4.0*U(I,2)+U(I,3))/DLY4
|
||
|
RETURN
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT Y=C+DLY
|
||
|
C
|
||
|
30 IF (KSWY .EQ. 1) GO TO 40
|
||
|
UYYY = (-3.0*U(I,1)+10.0*U(I,2)-12.0*U(I,3)+6.0*U(I,4)-U(I,5))/
|
||
|
1 TDLY3
|
||
|
UYYYY = (2.0*U(I,1)-9.0*U(I,2)+16.0*U(I,3)-14.0*U(I,4)+6.0*U(I,5)-
|
||
|
1 U(I,6))/DLY4
|
||
|
RETURN
|
||
|
C
|
||
|
C PERIODIC AT Y=C+DLY
|
||
|
C
|
||
|
40 UYYY = (-U(I,L-1)+2.0*U(I,1)-2.0*U(I,3)+U(I,4))/TDLY3
|
||
|
UYYYY = (U(I,L-1)-4.0*U(I,1)+6.0*U(I,2)-4.0*U(I,3)+U(I,4))/DLY4
|
||
|
RETURN
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS ON THE INTERIOR
|
||
|
C
|
||
|
50 CONTINUE
|
||
|
UYYY = (-U(I,J-2)+2.0*U(I,J-1)-2.0*U(I,J+1)+U(I,J+2))/TDLY3
|
||
|
UYYYY = (U(I,J-2)-4.0*U(I,J-1)+6.0*U(I,J)-4.0*U(I,J+1)+U(I,J+2))/
|
||
|
1 DLY4
|
||
|
RETURN
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT Y=D-DLY
|
||
|
C
|
||
|
60 IF (KSWY .EQ. 1) GO TO 70
|
||
|
UYYY = (U(I,L-4)-6.0*U(I,L-3)+12.0*U(I,L-2)-10.0*U(I,L-1)+
|
||
|
1 3.0*U(I,L))/TDLY3
|
||
|
UYYYY = (-U(I,L-5)+6.0*U(I,L-4)-14.0*U(I,L-3)+16.0*U(I,L-2)-
|
||
|
1 9.0*U(I,L-1)+2.0*U(I,L))/DLY4
|
||
|
RETURN
|
||
|
C
|
||
|
C PERIODIC AT Y=D-DLY
|
||
|
C
|
||
|
70 CONTINUE
|
||
|
UYYY = (-U(I,L-3)+2.0*U(I,L-2)-2.0*U(I,1)+U(I,2))/TDLY3
|
||
|
UYYYY = (U(I,L-3)-4.0*U(I,L-2)+6.0*U(I,L-1)-4.0*U(I,1)+U(I,2))/
|
||
|
1 DLY4
|
||
|
RETURN
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT Y=D
|
||
|
C
|
||
|
80 UYYY = -(3.0*U(I,L-4)-14.0*U(I,L-3)+24.0*U(I,L-2)-18.0*U(I,L-1)+
|
||
|
1 5.0*U(I,L))/TDLY3
|
||
|
UYYYY = (-2.0*U(I,L-5)+11.0*U(I,L-4)-24.0*U(I,L-3)+26.0*U(I,L-2)-
|
||
|
1 14.0*U(I,L-1)+3.0*U(I,L))/DLY4
|
||
|
RETURN
|
||
|
END
|