mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
120 lines
3.7 KiB
FortranFixed
120 lines
3.7 KiB
FortranFixed
|
*DECK EZFFTB
|
||
|
SUBROUTINE EZFFTB (N, R, AZERO, A, B, WSAVE)
|
||
|
C***BEGIN PROLOGUE EZFFTB
|
||
|
C***PURPOSE A simplified real, periodic, backward fast Fourier
|
||
|
C transform.
|
||
|
C***LIBRARY SLATEC (FFTPACK)
|
||
|
C***CATEGORY J1A1
|
||
|
C***TYPE SINGLE PRECISION (EZFFTB-S)
|
||
|
C***KEYWORDS FFTPACK, FOURIER TRANSFORM
|
||
|
C***AUTHOR Swarztrauber, P. N., (NCAR)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Subroutine EZFFTB computes a real periodic sequence from its
|
||
|
C Fourier coefficients (Fourier synthesis). The transform is
|
||
|
C defined below at Output Parameter R. EZFFTB is a simplified
|
||
|
C but slower version of RFFTB.
|
||
|
C
|
||
|
C Input Parameters
|
||
|
C
|
||
|
C N the length of the output array R. The method is most
|
||
|
C efficient when N is the product of small primes.
|
||
|
C
|
||
|
C AZERO the constant Fourier coefficient
|
||
|
C
|
||
|
C A,B arrays which contain the remaining Fourier coefficients.
|
||
|
C These arrays are not destroyed.
|
||
|
C
|
||
|
C The length of these arrays depends on whether N is even or
|
||
|
C odd.
|
||
|
C
|
||
|
C If N is even, N/2 locations are required.
|
||
|
C If N is odd, (N-1)/2 locations are required
|
||
|
C
|
||
|
C WSAVE a work array which must be dimensioned at least 3*N+15
|
||
|
C in the program that calls EZFFTB. The WSAVE array must be
|
||
|
C initialized by calling subroutine EZFFTI(N,WSAVE), and a
|
||
|
C different WSAVE array must be used for each different
|
||
|
C value of N. This initialization does not have to be
|
||
|
C repeated so long as N remains unchanged. Thus subsequent
|
||
|
C transforms can be obtained faster than the first.
|
||
|
C The same WSAVE array can be used by EZFFTF and EZFFTB.
|
||
|
C
|
||
|
C Output Parameters
|
||
|
C
|
||
|
C R if N is even, define KMAX=N/2
|
||
|
C if N is odd, define KMAX=(N-1)/2
|
||
|
C
|
||
|
C Then for I=1,...,N
|
||
|
C
|
||
|
C R(I)=AZERO plus the sum from K=1 to K=KMAX of
|
||
|
C
|
||
|
C A(K)*COS(K*(I-1)*2*PI/N)+B(K)*SIN(K*(I-1)*2*PI/N)
|
||
|
C
|
||
|
C ********************* Complex Notation **************************
|
||
|
C
|
||
|
C For J=1,...,N
|
||
|
C
|
||
|
C R(J) equals the sum from K=-KMAX to K=KMAX of
|
||
|
C
|
||
|
C C(K)*EXP(I*K*(J-1)*2*PI/N)
|
||
|
C
|
||
|
C where
|
||
|
C
|
||
|
C C(K) = .5*CMPLX(A(K),-B(K)) for K=1,...,KMAX
|
||
|
C
|
||
|
C C(-K) = CONJG(C(K))
|
||
|
C
|
||
|
C C(0) = AZERO
|
||
|
C
|
||
|
C and I=SQRT(-1)
|
||
|
C
|
||
|
C *************** Amplitude - Phase Notation ***********************
|
||
|
C
|
||
|
C For I=1,...,N
|
||
|
C
|
||
|
C R(I) equals AZERO plus the sum from K=1 to K=KMAX of
|
||
|
C
|
||
|
C ALPHA(K)*COS(K*(I-1)*2*PI/N+BETA(K))
|
||
|
C
|
||
|
C where
|
||
|
C
|
||
|
C ALPHA(K) = SQRT(A(K)*A(K)+B(K)*B(K))
|
||
|
C
|
||
|
C COS(BETA(K))=A(K)/ALPHA(K)
|
||
|
C
|
||
|
C SIN(BETA(K))=-B(K)/ALPHA(K)
|
||
|
C
|
||
|
C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
|
||
|
C Computations (G. Rodrigue, ed.), Academic Press,
|
||
|
C 1982, pp. 51-83.
|
||
|
C***ROUTINES CALLED RFFTB
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 790601 DATE WRITTEN
|
||
|
C 830401 Modified to use SLATEC library source file format.
|
||
|
C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
|
||
|
C changing dummy array size declarations (1) to (*)
|
||
|
C 861211 REVISION DATE from Version 3.2
|
||
|
C 881128 Modified by Dick Valent to meet prologue standards.
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE EZFFTB
|
||
|
DIMENSION R(*), A(*), B(*), WSAVE(*)
|
||
|
C***FIRST EXECUTABLE STATEMENT EZFFTB
|
||
|
IF (N-2) 101,102,103
|
||
|
101 R(1) = AZERO
|
||
|
RETURN
|
||
|
102 R(1) = AZERO+A(1)
|
||
|
R(2) = AZERO-A(1)
|
||
|
RETURN
|
||
|
103 NS2 = (N-1)/2
|
||
|
DO 104 I=1,NS2
|
||
|
R(2*I) = .5*A(I)
|
||
|
R(2*I+1) = -.5*B(I)
|
||
|
104 CONTINUE
|
||
|
R(1) = AZERO
|
||
|
IF (MOD(N,2) .EQ. 0) R(N) = A(NS2+1)
|
||
|
CALL RFFTB (N,R,WSAVE(N+1))
|
||
|
RETURN
|
||
|
END
|