OpenLibm/slatec/ezfftb.f

120 lines
3.7 KiB
FortranFixed
Raw Normal View History

*DECK EZFFTB
SUBROUTINE EZFFTB (N, R, AZERO, A, B, WSAVE)
C***BEGIN PROLOGUE EZFFTB
C***PURPOSE A simplified real, periodic, backward fast Fourier
C transform.
C***LIBRARY SLATEC (FFTPACK)
C***CATEGORY J1A1
C***TYPE SINGLE PRECISION (EZFFTB-S)
C***KEYWORDS FFTPACK, FOURIER TRANSFORM
C***AUTHOR Swarztrauber, P. N., (NCAR)
C***DESCRIPTION
C
C Subroutine EZFFTB computes a real periodic sequence from its
C Fourier coefficients (Fourier synthesis). The transform is
C defined below at Output Parameter R. EZFFTB is a simplified
C but slower version of RFFTB.
C
C Input Parameters
C
C N the length of the output array R. The method is most
C efficient when N is the product of small primes.
C
C AZERO the constant Fourier coefficient
C
C A,B arrays which contain the remaining Fourier coefficients.
C These arrays are not destroyed.
C
C The length of these arrays depends on whether N is even or
C odd.
C
C If N is even, N/2 locations are required.
C If N is odd, (N-1)/2 locations are required
C
C WSAVE a work array which must be dimensioned at least 3*N+15
C in the program that calls EZFFTB. The WSAVE array must be
C initialized by calling subroutine EZFFTI(N,WSAVE), and a
C different WSAVE array must be used for each different
C value of N. This initialization does not have to be
C repeated so long as N remains unchanged. Thus subsequent
C transforms can be obtained faster than the first.
C The same WSAVE array can be used by EZFFTF and EZFFTB.
C
C Output Parameters
C
C R if N is even, define KMAX=N/2
C if N is odd, define KMAX=(N-1)/2
C
C Then for I=1,...,N
C
C R(I)=AZERO plus the sum from K=1 to K=KMAX of
C
C A(K)*COS(K*(I-1)*2*PI/N)+B(K)*SIN(K*(I-1)*2*PI/N)
C
C ********************* Complex Notation **************************
C
C For J=1,...,N
C
C R(J) equals the sum from K=-KMAX to K=KMAX of
C
C C(K)*EXP(I*K*(J-1)*2*PI/N)
C
C where
C
C C(K) = .5*CMPLX(A(K),-B(K)) for K=1,...,KMAX
C
C C(-K) = CONJG(C(K))
C
C C(0) = AZERO
C
C and I=SQRT(-1)
C
C *************** Amplitude - Phase Notation ***********************
C
C For I=1,...,N
C
C R(I) equals AZERO plus the sum from K=1 to K=KMAX of
C
C ALPHA(K)*COS(K*(I-1)*2*PI/N+BETA(K))
C
C where
C
C ALPHA(K) = SQRT(A(K)*A(K)+B(K)*B(K))
C
C COS(BETA(K))=A(K)/ALPHA(K)
C
C SIN(BETA(K))=-B(K)/ALPHA(K)
C
C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
C Computations (G. Rodrigue, ed.), Academic Press,
C 1982, pp. 51-83.
C***ROUTINES CALLED RFFTB
C***REVISION HISTORY (YYMMDD)
C 790601 DATE WRITTEN
C 830401 Modified to use SLATEC library source file format.
C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
C changing dummy array size declarations (1) to (*)
C 861211 REVISION DATE from Version 3.2
C 881128 Modified by Dick Valent to meet prologue standards.
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE EZFFTB
DIMENSION R(*), A(*), B(*), WSAVE(*)
C***FIRST EXECUTABLE STATEMENT EZFFTB
IF (N-2) 101,102,103
101 R(1) = AZERO
RETURN
102 R(1) = AZERO+A(1)
R(2) = AZERO-A(1)
RETURN
103 NS2 = (N-1)/2
DO 104 I=1,NS2
R(2*I) = .5*A(I)
R(2*I+1) = -.5*B(I)
104 CONTINUE
R(1) = AZERO
IF (MOD(N,2) .EQ. 0) R(N) = A(NS2+1)
CALL RFFTB (N,R,WSAVE(N+1))
RETURN
END