OpenLibm/slatec/gamit.f

113 lines
3.7 KiB
FortranFixed
Raw Normal View History

*DECK GAMIT
REAL FUNCTION GAMIT (A, X)
C***BEGIN PROLOGUE GAMIT
C***PURPOSE Calculate Tricomi's form of the incomplete Gamma function.
C***LIBRARY SLATEC (FNLIB)
C***CATEGORY C7E
C***TYPE SINGLE PRECISION (GAMIT-S, DGAMIT-D)
C***KEYWORDS COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
C SPECIAL FUNCTIONS, TRICOMI
C***AUTHOR Fullerton, W., (LANL)
C***DESCRIPTION
C
C Evaluate Tricomi's incomplete gamma function defined by
C
C GAMIT = X**(-A)/GAMMA(A) * integral from 0 to X of EXP(-T) *
C T**(A-1.)
C
C for A .GT. 0.0 and by analytic continuation for A .LE. 0.0.
C GAMMA(X) is the complete gamma function of X.
C
C GAMIT is evaluated for arbitrary real values of A and for non-
C negative values of X (even though GAMIT is defined for X .LT.
C 0.0), except that for X = 0 and A .LE. 0.0, GAMIT is infinite,
C which is a fatal error.
C
C The function and both arguments are REAL.
C
C A slight deterioration of 2 or 3 digits accuracy will occur when
C GAMIT is very large or very small in absolute value, because log-
C arithmic variables are used. Also, if the parameter A is very
C close to a negative integer (but not a negative integer), there is
C a loss of accuracy, which is reported if the result is less than
C half machine precision.
C
C***REFERENCES W. Gautschi, A computational procedure for incomplete
C gamma functions, ACM Transactions on Mathematical
C Software 5, 4 (December 1979), pp. 466-481.
C W. Gautschi, Incomplete gamma functions, Algorithm 542,
C ACM Transactions on Mathematical Software 5, 4
C (December 1979), pp. 482-489.
C***ROUTINES CALLED ALGAMS, ALNGAM, GAMR, R1MACH, R9GMIT, R9LGIC,
C R9LGIT, XERCLR, XERMSG
C***REVISION HISTORY (YYMMDD)
C 770701 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
C***END PROLOGUE GAMIT
LOGICAL FIRST
SAVE ALNEPS, SQEPS, BOT, FIRST
DATA FIRST /.TRUE./
C***FIRST EXECUTABLE STATEMENT GAMIT
IF (FIRST) THEN
ALNEPS = -LOG(R1MACH(3))
SQEPS = SQRT(R1MACH(4))
BOT = LOG(R1MACH(1))
ENDIF
FIRST = .FALSE.
C
IF (X .LT. 0.0) CALL XERMSG ('SLATEC', 'GAMIT', 'X IS NEGATIVE',
+ 2, 2)
C
IF (X.NE.0.0) ALX = LOG(X)
SGA = 1.0
IF (A.NE.0.0) SGA = SIGN (1.0, A)
AINTA = AINT (A+0.5*SGA)
AEPS = A - AINTA
C
IF (X.GT.0.0) GO TO 20
GAMIT = 0.0
IF (AINTA.GT.0.0 .OR. AEPS.NE.0.0) GAMIT = GAMR(A+1.0)
RETURN
C
20 IF (X.GT.1.0) GO TO 40
IF (A.GE.(-0.5) .OR. AEPS.NE.0.0) CALL ALGAMS (A+1.0, ALGAP1,
1 SGNGAM)
GAMIT = R9GMIT (A, X, ALGAP1, SGNGAM, ALX)
RETURN
C
40 IF (A.LT.X) GO TO 50
T = R9LGIT (A, X, ALNGAM(A+1.0))
IF (T.LT.BOT) CALL XERCLR
GAMIT = EXP(T)
RETURN
C
50 ALNG = R9LGIC (A, X, ALX)
C
C EVALUATE GAMIT IN TERMS OF LOG(GAMIC(A,X))
C
H = 1.0
IF (AEPS.EQ.0.0 .AND. AINTA.LE.0.0) GO TO 60
CALL ALGAMS (A+1.0, ALGAP1, SGNGAM)
T = LOG(ABS(A)) + ALNG - ALGAP1
IF (T.GT.ALNEPS) GO TO 70
IF (T.GT.(-ALNEPS)) H = 1.0 - SGA*SGNGAM*EXP(T)
IF (ABS(H).GT.SQEPS) GO TO 60
CALL XERCLR
CALL XERMSG ('SLATEC', 'GAMIT', 'RESULT LT HALF PRECISION', 1, 1)
C
60 T = -A*ALX + LOG(ABS(H))
IF (T.LT.BOT) CALL XERCLR
GAMIT = SIGN (EXP(T), H)
RETURN
C
70 T = T - A*ALX
IF (T.LT.BOT) CALL XERCLR
GAMIT = -SGA*SGNGAM*EXP(T)
RETURN
C
END