OpenLibm/slatec/hfti.f

289 lines
9.7 KiB
FortranFixed
Raw Normal View History

*DECK HFTI
SUBROUTINE HFTI (A, MDA, M, N, B, MDB, NB, TAU, KRANK, RNORM, H,
+ G, IP)
C***BEGIN PROLOGUE HFTI
C***PURPOSE Solve a linear least squares problems by performing a QR
C factorization of the matrix using Householder
C transformations.
C***LIBRARY SLATEC
C***CATEGORY D9
C***TYPE SINGLE PRECISION (HFTI-S, DHFTI-D)
C***KEYWORDS CURVE FITTING, LINEAR LEAST SQUARES, QR FACTORIZATION
C***AUTHOR Lawson, C. L., (JPL)
C Hanson, R. J., (SNLA)
C***DESCRIPTION
C
C DIMENSION A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N)
C
C This subroutine solves a linear least squares problem or a set of
C linear least squares problems having the same matrix but different
C right-side vectors. The problem data consists of an M by N matrix
C A, an M by NB matrix B, and an absolute tolerance parameter TAU
C whose usage is described below. The NB column vectors of B
C represent right-side vectors for NB distinct linear least squares
C problems.
C
C This set of problems can also be written as the matrix least
C squares problem
C
C AX = B,
C
C where X is the N by NB solution matrix.
C
C Note that if B is the M by M identity matrix, then X will be the
C pseudo-inverse of A.
C
C This subroutine first transforms the augmented matrix (A B) to a
C matrix (R C) using premultiplying Householder transformations with
C column interchanges. All subdiagonal elements in the matrix R are
C zero and its diagonal elements satisfy
C
C ABS(R(I,I)).GE.ABS(R(I+1,I+1)),
C
C I = 1,...,L-1, where
C
C L = MIN(M,N).
C
C The subroutine will compute an integer, KRANK, equal to the number
C of diagonal terms of R that exceed TAU in magnitude. Then a
C solution of minimum Euclidean length is computed using the first
C KRANK rows of (R C).
C
C To be specific we suggest that the user consider an easily
C computable matrix norm, such as, the maximum of all column sums of
C magnitudes.
C
C Now if the relative uncertainty of B is EPS, (norm of uncertainty/
C norm of B), it is suggested that TAU be set approximately equal to
C EPS*(norm of A).
C
C The user must dimension all arrays appearing in the call list..
C A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N). This
C permits the solution of a range of problems in the same array
C space.
C
C The entire set of parameters for HFTI are
C
C INPUT..
C
C A(*,*),MDA,M,N The array A(*,*) initially contains the M by N
C matrix A of the least squares problem AX = B.
C The first dimensioning parameter of the array
C A(*,*) is MDA, which must satisfy MDA.GE.M
C Either M.GE.N or M.LT.N is permitted. There
C is no restriction on the rank of A. The
C condition MDA.LT.M is considered an error.
C
C B(*),MDB,NB If NB = 0 the subroutine will perform the
C orthogonal decomposition but will make no
C references to the array B(*). If NB.GT.0
C the array B(*) must initially contain the M by
C NB matrix B of the least squares problem AX =
C B. If NB.GE.2 the array B(*) must be doubly
C subscripted with first dimensioning parameter
C MDB.GE.MAX(M,N). If NB = 1 the array B(*) may
C be either doubly or singly subscripted. In
C the latter case the value of MDB is arbitrary
C but it should be set to some valid integer
C value such as MDB = M.
C
C The condition of NB.GT.1.AND.MDB.LT. MAX(M,N)
C is considered an error.
C
C TAU Absolute tolerance parameter provided by user
C for pseudorank determination.
C
C H(*),G(*),IP(*) Arrays of working space used by HFTI.
C
C OUTPUT..
C
C A(*,*) The contents of the array A(*,*) will be
C modified by the subroutine. These contents
C are not generally required by the user.
C
C B(*) On return the array B(*) will contain the N by
C NB solution matrix X.
C
C KRANK Set by the subroutine to indicate the
C pseudorank of A.
C
C RNORM(*) On return, RNORM(J) will contain the Euclidean
C norm of the residual vector for the problem
C defined by the J-th column vector of the array
C B(*,*) for J = 1,...,NB.
C
C H(*),G(*) On return these arrays respectively contain
C elements of the pre- and post-multiplying
C Householder transformations used to compute
C the minimum Euclidean length solution.
C
C IP(*) Array in which the subroutine records indices
C describing the permutation of column vectors.
C The contents of arrays H(*),G(*) and IP(*)
C are not generally required by the user.
C
C***REFERENCES C. L. Lawson and R. J. Hanson, Solving Least Squares
C Problems, Prentice-Hall, Inc., 1974, Chapter 14.
C***ROUTINES CALLED H12, R1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 790101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 891006 Cosmetic changes to prologue. (WRB)
C 891006 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 901005 Replace usage of DIFF with usage of R1MACH. (RWC)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE HFTI
DIMENSION A(MDA,*),B(MDB,*),H(*),G(*),RNORM(*)
INTEGER IP(*)
DOUBLE PRECISION SM,DZERO
SAVE RELEPS
DATA RELEPS /0.E0/
C***FIRST EXECUTABLE STATEMENT HFTI
IF (RELEPS.EQ.0) RELEPS = R1MACH(4)
SZERO=0.
DZERO=0.D0
FACTOR=0.001
C
K=0
LDIAG=MIN(M,N)
IF (LDIAG.LE.0) GO TO 270
IF (.NOT.MDA.LT.M) GO TO 5
NERR=1
IOPT=2
CALL XERMSG ('SLATEC', 'HFTI', 'MDA.LT.M, PROBABLE ERROR.',
+ NERR, IOPT)
RETURN
5 CONTINUE
C
IF (.NOT.(NB.GT.1.AND.MAX(M,N).GT.MDB)) GO TO 6
NERR=2
IOPT=2
CALL XERMSG ('SLATEC', 'HFTI',
+ 'MDB.LT.MAX(M,N).AND.NB.GT.1. PROBABLE ERROR.', NERR, IOPT)
RETURN
6 CONTINUE
C
DO 80 J=1,LDIAG
IF (J.EQ.1) GO TO 20
C
C UPDATE SQUARED COLUMN LENGTHS AND FIND LMAX
C ..
LMAX=J
DO 10 L=J,N
H(L)=H(L)-A(J-1,L)**2
IF (H(L).GT.H(LMAX)) LMAX=L
10 CONTINUE
IF (FACTOR*H(LMAX) .GT. HMAX*RELEPS) GO TO 50
C
C COMPUTE SQUARED COLUMN LENGTHS AND FIND LMAX
C ..
20 LMAX=J
DO 40 L=J,N
H(L)=0.
DO 30 I=J,M
30 H(L)=H(L)+A(I,L)**2
IF (H(L).GT.H(LMAX)) LMAX=L
40 CONTINUE
HMAX=H(LMAX)
C ..
C LMAX HAS BEEN DETERMINED
C
C DO COLUMN INTERCHANGES IF NEEDED.
C ..
50 CONTINUE
IP(J)=LMAX
IF (IP(J).EQ.J) GO TO 70
DO 60 I=1,M
TMP=A(I,J)
A(I,J)=A(I,LMAX)
60 A(I,LMAX)=TMP
H(LMAX)=H(J)
C
C COMPUTE THE J-TH TRANSFORMATION AND APPLY IT TO A AND B.
C ..
70 CALL H12 (1,J,J+1,M,A(1,J),1,H(J),A(1,J+1),1,MDA,N-J)
80 CALL H12 (2,J,J+1,M,A(1,J),1,H(J),B,1,MDB,NB)
C
C DETERMINE THE PSEUDORANK, K, USING THE TOLERANCE, TAU.
C ..
DO 90 J=1,LDIAG
IF (ABS(A(J,J)).LE.TAU) GO TO 100
90 CONTINUE
K=LDIAG
GO TO 110
100 K=J-1
110 KP1=K+1
C
C COMPUTE THE NORMS OF THE RESIDUAL VECTORS.
C
IF (NB.LE.0) GO TO 140
DO 130 JB=1,NB
TMP=SZERO
IF (KP1.GT.M) GO TO 130
DO 120 I=KP1,M
120 TMP=TMP+B(I,JB)**2
130 RNORM(JB)=SQRT(TMP)
140 CONTINUE
C SPECIAL FOR PSEUDORANK = 0
IF (K.GT.0) GO TO 160
IF (NB.LE.0) GO TO 270
DO 150 JB=1,NB
DO 150 I=1,N
150 B(I,JB)=SZERO
GO TO 270
C
C IF THE PSEUDORANK IS LESS THAN N COMPUTE HOUSEHOLDER
C DECOMPOSITION OF FIRST K ROWS.
C ..
160 IF (K.EQ.N) GO TO 180
DO 170 II=1,K
I=KP1-II
170 CALL H12 (1,I,KP1,N,A(I,1),MDA,G(I),A,MDA,1,I-1)
180 CONTINUE
C
C
IF (NB.LE.0) GO TO 270
DO 260 JB=1,NB
C
C SOLVE THE K BY K TRIANGULAR SYSTEM.
C ..
DO 210 L=1,K
SM=DZERO
I=KP1-L
IF (I.EQ.K) GO TO 200
IP1=I+1
DO 190 J=IP1,K
190 SM=SM+A(I,J)*DBLE(B(J,JB))
200 SM1=SM
210 B(I,JB)=(B(I,JB)-SM1)/A(I,I)
C
C COMPLETE COMPUTATION OF SOLUTION VECTOR.
C ..
IF (K.EQ.N) GO TO 240
DO 220 J=KP1,N
220 B(J,JB)=SZERO
DO 230 I=1,K
230 CALL H12 (2,I,KP1,N,A(I,1),MDA,G(I),B(1,JB),1,MDB,1)
C
C RE-ORDER THE SOLUTION VECTOR TO COMPENSATE FOR THE
C COLUMN INTERCHANGES.
C ..
240 DO 250 JJ=1,LDIAG
J=LDIAG+1-JJ
IF (IP(J).EQ.J) GO TO 250
L=IP(J)
TMP=B(L,JB)
B(L,JB)=B(J,JB)
B(J,JB)=TMP
250 CONTINUE
260 CONTINUE
C ..
C THE SOLUTION VECTORS, X, ARE NOW
C IN THE FIRST N ROWS OF THE ARRAY B(,).
C
270 KRANK=K
RETURN
END