mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
341 lines
10 KiB
FortranFixed
341 lines
10 KiB
FortranFixed
|
*DECK HPSORT
|
||
|
SUBROUTINE HPSORT (HX, N, STRBEG, STREND, IPERM, KFLAG, WORK, IER)
|
||
|
C***BEGIN PROLOGUE HPSORT
|
||
|
C***PURPOSE Return the permutation vector generated by sorting a
|
||
|
C substring within a character array and, optionally,
|
||
|
C rearrange the elements of the array. The array may be
|
||
|
C sorted in forward or reverse lexicographical order. A
|
||
|
C slightly modified quicksort algorithm is used.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY N6A1C, N6A2C
|
||
|
C***TYPE CHARACTER (SPSORT-S, DPSORT-D, IPSORT-I, HPSORT-H)
|
||
|
C***KEYWORDS PASSIVE SORTING, SINGLETON QUICKSORT, SORT, STRING SORTING
|
||
|
C***AUTHOR Jones, R. E., (SNLA)
|
||
|
C Rhoads, G. S., (NBS)
|
||
|
C Sullivan, F. E., (NBS)
|
||
|
C Wisniewski, J. A., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C HPSORT returns the permutation vector IPERM generated by sorting
|
||
|
C the substrings beginning with the character STRBEG and ending with
|
||
|
C the character STREND within the strings in array HX and, optionally,
|
||
|
C rearranges the strings in HX. HX may be sorted in increasing or
|
||
|
C decreasing lexicographical order. A slightly modified quicksort
|
||
|
C algorithm is used.
|
||
|
C
|
||
|
C IPERM is such that HX(IPERM(I)) is the Ith value in the
|
||
|
C rearrangement of HX. IPERM may be applied to another array by
|
||
|
C calling IPPERM, SPPERM, DPPERM or HPPERM.
|
||
|
C
|
||
|
C An active sort of numerical data is expected to execute somewhat
|
||
|
C more quickly than a passive sort because there is no need to use
|
||
|
C indirect references. But for the character data in HPSORT, integers
|
||
|
C in the IPERM vector are manipulated rather than the strings in HX.
|
||
|
C Moving integers may be enough faster than moving character strings
|
||
|
C to more than offset the penalty of indirect referencing.
|
||
|
C
|
||
|
C Description of Parameters
|
||
|
C HX - input/output -- array of type character to be sorted.
|
||
|
C For example, to sort a 80 element array of names,
|
||
|
C each of length 6, declare HX as character HX(100)*6.
|
||
|
C If ABS(KFLAG) = 2, then the values in HX will be
|
||
|
C rearranged on output; otherwise, they are unchanged.
|
||
|
C N - input -- number of values in array HX to be sorted.
|
||
|
C STRBEG - input -- the index of the initial character in
|
||
|
C the string HX that is to be sorted.
|
||
|
C STREND - input -- the index of the final character in
|
||
|
C the string HX that is to be sorted.
|
||
|
C IPERM - output -- permutation array such that IPERM(I) is the
|
||
|
C index of the string in the original order of the
|
||
|
C HX array that is in the Ith location in the sorted
|
||
|
C order.
|
||
|
C KFLAG - input -- control parameter:
|
||
|
C = 2 means return the permutation vector resulting from
|
||
|
C sorting HX in lexicographical order and sort HX also.
|
||
|
C = 1 means return the permutation vector resulting from
|
||
|
C sorting HX in lexicographical order and do not sort
|
||
|
C HX.
|
||
|
C = -1 means return the permutation vector resulting from
|
||
|
C sorting HX in reverse lexicographical order and do
|
||
|
C not sort HX.
|
||
|
C = -2 means return the permutation vector resulting from
|
||
|
C sorting HX in reverse lexicographical order and sort
|
||
|
C HX also.
|
||
|
C WORK - character variable which must have a length specification
|
||
|
C at least as great as that of HX.
|
||
|
C IER - output -- error indicator:
|
||
|
C = 0 if no error,
|
||
|
C = 1 if N is zero or negative,
|
||
|
C = 2 if KFLAG is not 2, 1, -1, or -2,
|
||
|
C = 3 if work array is not long enough,
|
||
|
C = 4 if string beginning is beyond its end,
|
||
|
C = 5 if string beginning is out-of-range,
|
||
|
C = 6 if string end is out-of-range.
|
||
|
C
|
||
|
C E X A M P L E O F U S E
|
||
|
C
|
||
|
C CHARACTER*2 HX, W
|
||
|
C INTEGER STRBEG, STREND
|
||
|
C DIMENSION HX(10), IPERM(10)
|
||
|
C DATA (HX(I),I=1,10)/ '05','I ',' I',' ','Rs','9R','R9','89',
|
||
|
C 1 ',*','N"'/
|
||
|
C DATA STRBEG, STREND / 1, 2 /
|
||
|
C CALL HPSORT (HX,10,STRBEG,STREND,IPERM,1,W)
|
||
|
C PRINT 100, (HX(IPERM(I)),I=1,10)
|
||
|
C 100 FORMAT (2X, A2)
|
||
|
C STOP
|
||
|
C END
|
||
|
C
|
||
|
C***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
|
||
|
C for sorting with minimal storage, Communications of
|
||
|
C the ACM, 12, 3 (1969), pp. 185-187.
|
||
|
C***ROUTINES CALLED XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 761101 DATE WRITTEN
|
||
|
C 761118 Modified by John A. Wisniewski to use the Singleton
|
||
|
C quicksort algorithm.
|
||
|
C 811001 Modified by Francis Sullivan for string data.
|
||
|
C 850326 Documentation slightly modified by D. Kahaner.
|
||
|
C 870423 Modified by Gregory S. Rhoads for passive sorting with the
|
||
|
C option for the rearrangement of the original data.
|
||
|
C 890620 Algorithm for rearranging the data vector corrected by R.
|
||
|
C Boisvert.
|
||
|
C 890622 Prologue upgraded to Version 4.0 style by D. Lozier.
|
||
|
C 920507 Modified by M. McClain to revise prologue text.
|
||
|
C 920818 Declarations section rebuilt and code restructured to use
|
||
|
C IF-THEN-ELSE-ENDIF. (SMR, WRB)
|
||
|
C***END PROLOGUE HPSORT
|
||
|
C .. Scalar Arguments ..
|
||
|
INTEGER IER, KFLAG, N, STRBEG, STREND
|
||
|
CHARACTER * (*) WORK
|
||
|
C .. Array Arguments ..
|
||
|
INTEGER IPERM(*)
|
||
|
CHARACTER * (*) HX(*)
|
||
|
C .. Local Scalars ..
|
||
|
REAL R
|
||
|
INTEGER I, IJ, INDX, INDX0, IR, ISTRT, J, K, KK, L, LM, LMT, M,
|
||
|
+ NN, NN2
|
||
|
C .. Local Arrays ..
|
||
|
INTEGER IL(21), IU(21)
|
||
|
C .. External Subroutines ..
|
||
|
EXTERNAL XERMSG
|
||
|
C .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, INT, LEN
|
||
|
C***FIRST EXECUTABLE STATEMENT HPSORT
|
||
|
IER = 0
|
||
|
NN = N
|
||
|
IF (NN .LT. 1) THEN
|
||
|
IER = 1
|
||
|
CALL XERMSG ('SLATEC', 'HPSORT',
|
||
|
+ 'The number of values to be sorted, N, is not positive.',
|
||
|
+ IER, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
KK = ABS(KFLAG)
|
||
|
IF (KK.NE.1 .AND. KK.NE.2) THEN
|
||
|
IER = 2
|
||
|
CALL XERMSG ('SLATEC', 'HPSORT',
|
||
|
+ 'The sort control parameter, KFLAG, is not 2, 1, -1, or -2.',
|
||
|
+ IER, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
IF(LEN(WORK) .LT. LEN(HX(1))) THEN
|
||
|
IER = 3
|
||
|
CALL XERMSG ('SLATEC',' HPSORT',
|
||
|
+ 'The length of the work variable, WORK, is too short.',
|
||
|
+ IER, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
IF (STRBEG .GT. STREND) THEN
|
||
|
IER = 4
|
||
|
CALL XERMSG ('SLATEC', 'HPSORT',
|
||
|
+ 'The string beginning, STRBEG, is beyond its end, STREND.',
|
||
|
+ IER, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
IF (STRBEG .LT. 1 .OR. STRBEG .GT. LEN(HX(1))) THEN
|
||
|
IER = 5
|
||
|
CALL XERMSG ('SLATEC', 'HPSORT',
|
||
|
+ 'The string beginning, STRBEG, is out-of-range.',
|
||
|
+ IER, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
IF (STREND .LT. 1 .OR. STREND .GT. LEN(HX(1))) THEN
|
||
|
IER = 6
|
||
|
CALL XERMSG ('SLATEC', 'HPSORT',
|
||
|
+ 'The string end, STREND, is out-of-range.',
|
||
|
+ IER, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
C Initialize permutation vector
|
||
|
C
|
||
|
DO 10 I=1,NN
|
||
|
IPERM(I) = I
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
C Return if only one value is to be sorted
|
||
|
C
|
||
|
IF (NN .EQ. 1) RETURN
|
||
|
C
|
||
|
C Sort HX only
|
||
|
C
|
||
|
M = 1
|
||
|
I = 1
|
||
|
J = NN
|
||
|
R = .375E0
|
||
|
C
|
||
|
20 IF (I .EQ. J) GO TO 70
|
||
|
IF (R .LE. 0.5898437E0) THEN
|
||
|
R = R+3.90625E-2
|
||
|
ELSE
|
||
|
R = R-0.21875E0
|
||
|
ENDIF
|
||
|
C
|
||
|
30 K = I
|
||
|
C
|
||
|
C Select a central element of the array and save it in location L
|
||
|
C
|
||
|
IJ = I + INT((J-I)*R)
|
||
|
LM = IPERM(IJ)
|
||
|
C
|
||
|
C If first element of array is greater than LM, interchange with LM
|
||
|
C
|
||
|
IF (HX(IPERM(I))(STRBEG:STREND) .GT. HX(LM)(STRBEG:STREND)) THEN
|
||
|
IPERM(IJ) = IPERM(I)
|
||
|
IPERM(I) = LM
|
||
|
LM = IPERM(IJ)
|
||
|
ENDIF
|
||
|
L = J
|
||
|
C
|
||
|
C If last element of array is less than LM, interchange with LM
|
||
|
C
|
||
|
IF (HX(IPERM(J))(STRBEG:STREND) .LT. HX(LM)(STRBEG:STREND)) THEN
|
||
|
IPERM(IJ) = IPERM(J)
|
||
|
IPERM(J) = LM
|
||
|
LM = IPERM(IJ)
|
||
|
C
|
||
|
C If first element of array is greater than LM, interchange
|
||
|
C with LM
|
||
|
C
|
||
|
IF (HX(IPERM(I))(STRBEG:STREND) .GT. HX(LM)(STRBEG:STREND))
|
||
|
+ THEN
|
||
|
IPERM(IJ) = IPERM(I)
|
||
|
IPERM(I) = LM
|
||
|
LM = IPERM(IJ)
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
GO TO 50
|
||
|
40 LMT = IPERM(L)
|
||
|
IPERM(L) = IPERM(K)
|
||
|
IPERM(K) = LMT
|
||
|
C
|
||
|
C Find an element in the second half of the array which is smaller
|
||
|
C than LM
|
||
|
C
|
||
|
50 L = L-1
|
||
|
IF (HX(IPERM(L))(STRBEG:STREND) .GT. HX(LM)(STRBEG:STREND))
|
||
|
+ GO TO 50
|
||
|
C
|
||
|
C Find an element in the first half of the array which is greater
|
||
|
C than LM
|
||
|
C
|
||
|
60 K = K+1
|
||
|
IF (HX(IPERM(K))(STRBEG:STREND) .LT. HX(LM)(STRBEG:STREND))
|
||
|
+ GO TO 60
|
||
|
C
|
||
|
C Interchange these elements
|
||
|
C
|
||
|
IF (K .LE. L) GO TO 40
|
||
|
C
|
||
|
C Save upper and lower subscripts of the array yet to be sorted
|
||
|
C
|
||
|
IF (L-I .GT. J-K) THEN
|
||
|
IL(M) = I
|
||
|
IU(M) = L
|
||
|
I = K
|
||
|
M = M+1
|
||
|
ELSE
|
||
|
IL(M) = K
|
||
|
IU(M) = J
|
||
|
J = L
|
||
|
M = M+1
|
||
|
ENDIF
|
||
|
GO TO 80
|
||
|
C
|
||
|
C Begin again on another portion of the unsorted array
|
||
|
C
|
||
|
70 M = M-1
|
||
|
IF (M .EQ. 0) GO TO 110
|
||
|
I = IL(M)
|
||
|
J = IU(M)
|
||
|
C
|
||
|
80 IF (J-I .GE. 1) GO TO 30
|
||
|
IF (I .EQ. 1) GO TO 20
|
||
|
I = I-1
|
||
|
C
|
||
|
90 I = I+1
|
||
|
IF (I .EQ. J) GO TO 70
|
||
|
LM = IPERM(I+1)
|
||
|
IF (HX(IPERM(I))(STRBEG:STREND) .LE. HX(LM)(STRBEG:STREND))
|
||
|
+ GO TO 90
|
||
|
K = I
|
||
|
C
|
||
|
100 IPERM(K+1) = IPERM(K)
|
||
|
K = K-1
|
||
|
C
|
||
|
IF (HX(LM)(STRBEG:STREND) .LT. HX(IPERM(K))(STRBEG:STREND))
|
||
|
+ GO TO 100
|
||
|
IPERM(K+1) = LM
|
||
|
GO TO 90
|
||
|
C
|
||
|
C Clean up
|
||
|
C
|
||
|
110 IF (KFLAG .LE. -1) THEN
|
||
|
C
|
||
|
C Alter array to get reverse order, if necessary
|
||
|
C
|
||
|
NN2 = NN/2
|
||
|
DO 120 I=1,NN2
|
||
|
IR = NN-I+1
|
||
|
LM = IPERM(I)
|
||
|
IPERM(I) = IPERM(IR)
|
||
|
IPERM(IR) = LM
|
||
|
120 CONTINUE
|
||
|
ENDIF
|
||
|
C
|
||
|
C Rearrange the values of HX if desired
|
||
|
C
|
||
|
IF (KK .EQ. 2) THEN
|
||
|
C
|
||
|
C Use the IPERM vector as a flag.
|
||
|
C If IPERM(I) < 0, then the I-th value is in correct location
|
||
|
C
|
||
|
DO 140 ISTRT=1,NN
|
||
|
IF (IPERM(ISTRT) .GE. 0) THEN
|
||
|
INDX = ISTRT
|
||
|
INDX0 = INDX
|
||
|
WORK = HX(ISTRT)
|
||
|
130 IF (IPERM(INDX) .GT. 0) THEN
|
||
|
HX(INDX) = HX(IPERM(INDX))
|
||
|
INDX0 = INDX
|
||
|
IPERM(INDX) = -IPERM(INDX)
|
||
|
INDX = ABS(IPERM(INDX))
|
||
|
GO TO 130
|
||
|
ENDIF
|
||
|
HX(INDX0) = WORK
|
||
|
ENDIF
|
||
|
140 CONTINUE
|
||
|
C
|
||
|
C Revert the signs of the IPERM values
|
||
|
C
|
||
|
DO 150 I=1,NN
|
||
|
IPERM(I) = -IPERM(I)
|
||
|
150 CONTINUE
|
||
|
C
|
||
|
ENDIF
|
||
|
C
|
||
|
RETURN
|
||
|
END
|